Advanced Computer Aided Modelling of Chemical & Biochemical Processes

(03 - 07 September, 2018)

Department of Chemical Engineering, NIT WARANGAL

1. Overview

Process engineering is all about manufacturing of just about anything! To manage processing and manufacturing systematically, the engineer has to bring together many different techniques and analyses of the interaction between various aspects of the process. For example, process engineers would apply model-based tools to perform feasibility analyses of novel process designs, assess environmental impact, and/or detect potential hazards or accidents. Also, almost all chemical engineers have developed and/or used models at some time in their work and the question is, how much time and resources do they spend in model related work? To manage complex systems and enable process design, it is essential to understand the behavior of systems so as to represent them in appropriate mathematical forms, which needs to analyzed, solved and validated before application. The course will therefore aim to provide a systematic approach to the mathematical development of process models and highlight how to analyze and solve those models.

The course provides coverage of advanced process modelling and solution concepts for different types of models (lumped and distributed systems), different modes of models (steady state and dynamic) and different forms of models (simple-complex, large-reduced, discrete-continuous). Starting with definition of the modelling objectives, to the derivation of the model equations representing the system, to the analysis of the model equations, to developing different solution strategies for different modelling objectives to final application of the developed model will be covered in the course. It will be illustrated why using a systematic modelling approach has advantages, what methods and tools need to be used and how they can be applied. The objective is to save time and resources as well as to provide a good understanding of the domain system and leading to reliable problem solution for a wide range of problems. The course should help the participant to develop skills in model formulation, analysis, solution of the model equations as well as configure and apply model-based tools for practical problem solution.

2. Objectives

The primary objectives of the course are as follows:

- i) To train the participants on the use of advanced (systematic) modelling methods and tools for various modelling objectives.
- ii) To develop skills in model formulation, analysis and solution of the model equations.
- iii) To develop skills in configuring and applying model-based tools for practical problem solution.
- iv) To provide rich hands on experience on the methods and tools.

Lecture Schedule (maybe subject to changes)

Date	Lecture	Lecture Topic*	Tutorial/Exercise**
	Timing		14.00 – 17.00 hrs
03-09-2018	9.00 -	L1: Introduction to modelling	Introduction to MoT;
Modeling	10.30	L2: Model building framework	Modelling exercises
Basics	11.00 -	L2a: Conservation principles	
	12.30	L2b: Constitutive Models	
04-09-2018	9.00 -	L3a: Modelling lumped parameter	Tutorial with ICAS-
Lumped &	10.30	L3b: Distributed parameter systems	ModDev; Model
Distributed			creation-generation
parameter	11.00 -	L4: Multiscale modelling	exercises
systems	12.30	Niodel generation concept	
05-09-2018	9.00 -	L5a: Model analysis: lumped & distributed	Tutorial with ICAS-MoT;
	10.30	parameter systems	Model analysis exercises;
Model Analysis		L5b: Analysis of process models	Model solution with MoT
& Solution	11.00 -	L6a: Solution strategies for lumped	and CFD –tools
	12.30	L6b: Distributed parameter systems	
06-09-2018	9.00 -	L7: Model identification, calibration and	Tutorial with ICAS-MoT;
	10.30	validation	Model parameter
Model			estimation; model
Identification,	11.00 -	L8: Model discrimination	identification; Model
Validation &	12.30		discrimination
Discrimination			
	9.00 -	L9: Process simulator-based modelling	Development of
07 00 2018	10.30	(Prof. A. Sarath Babu)	customized model-based
07-09-2018		Demonstration of modelling template for model reuse	computer aided tools
Model	11.00 -	L10: Development and application of	
applications	12.30	model-based systems (customized model-	
and Case		based tools; Modelling of hybrid systems;	
Studies			

* Unless otherwise indicated, all lectures will be given by Prof. Rafiqul Gani

** Unless otherwise indicated, Prof Rafiqul Gani, Prof A. Sarath Babu, Dr. V Ramsagar, & Dr. Anjan K Tula will assist in the tutorials & exercises

Modules	 Modeling Basics 			
	 Lumped & Distributed parameter systems 			
	 Model Analysis & solution 			
	 Model Validation & Customized model development 			
	 Case Studies 			
You Should	 you are a faculty member/research scientist in chemical & Biochemical engineering interested in process modeling, simulation and optimization. 			
Attend II	 you are a professional chemical or bio-process engineer interested in process design, 			
	operation and retrofitting studies.			
	you are a student of chemical engineering / biotechnology interested in learning how to			
	model and simulate chemical processes			
Fees	The participation fees for taking the course is as follows:			
	Participants from abroad : US \$500 Industry/ Research Organizations: Rs. 10,000/-			
	Faculty: Rs. 4,000/-			
	Students & Research Scholars: Without award of Grade: Rs. 1,500/-			
	With award of Grade: Rs. 2,000/-			
	The above fee includes all instructional materials, computer use for tutorials and assignments and			
	24 hr free internet facility. The participants from academic/research institutes and Industry will			
	be provided with boarding and lodging on additional payment of Rs. 4,000/- in Visitors Block on			
	sharing basis. Students & Research Scholars will be provided with boarding and lodging in Institute			
	Hostels on additional payment of Rs. 2,500/			

The Faculty

Prof. Rafiqul Gani, CEO, PSE for SPEED, Skyttemosen 6, DK 3450 Allerod, Denmark

Dr. Sarath Babu Anne is a Professor of Chemical Engineering at NIT Warangal. His research interests are Process Modeling, Simulation and Optimization.

Dr. Ramsagar Vooradi is an Assistant Professor of Chemical Engineering at NIT, Warangal. His research interests are Batch-Scheduling and Process Simulation.

Dr Anjan K Tula is head of process engineering at PSE for SPEED (Thailand) and a post-doc at the Chemical Engineering Department of Auburn University.

Course Co-ordinators

Prof. Sarath Babu A & Dr. Ramsagar V Phone: 91-94901 65346, 91-8332969406 E-mail: <u>sarat@nitw.ac.in</u>; <u>ramsagar@nitw.ac.in</u>

http://www.nitw.ac.in