

Computer Aided Simulation of Chemical Processes: Day 1

Lecture 1: Introduction

Rafiqul Gani

PSE for SPEED Skyttemosen 6, DK-3450 Allerod, Denmark rgani2018@gmail.com

www.pseforspeed.com

Computer Aided Simulation of Chemical Processes

Course Objectives

Provide the participants with a clear understanding of the main features of process simulation and how these and related tools (modelling, optimization, integration) can be employed to solve practical problems commonly encountered in process engineering.

Use of computer aided tools will play an important role

What is Simulation?

Simulation is the act of representing some aspects of the real world by numbers or symbols which may be manipulated to facilitate their study

Uses of process simulation: Design & analysis a process through simulation/optimization

A chemical plant is our *real world*

Main steps in process simulation Develop process model Define Divider Problem Collect additional data Separator Mixer Reactor Analyze results **Chemical Plant** Solve model equations

Computer Aided Simulation of Chemical Process: Lecture 1

Steady state simulation - solve algebraic equations

Computer Aided Simulation of Chemical Process: Lecture 1

Dynamic simulation - solve ordinary differential equations

Computer Aided Simulation of Chemical Process: Lecture 1

Four Types Computer Aided Process Engineering Problems solved through process simulation

> Flowsheeting Specification (Design) Optimization (Design) Synthesis (& Design)

Flowsheeting Problem

Computer Aided Simulation of Chemical Process: Lecture 1

Specification (Design) Problem

Compared to the flowsheeting problem, instead of all incoming information, some outgoing data is specified. Note that the degree of freedom remains the same ! **Specification (Design) Problem: example**

Calculation procedure for specification problem

Optimization Problem

<u>Given</u> Feed composition, feed flowrate <u>Choose</u> Target product composition Number of trays, feed tray location

Minimize

Objective = *f* (*yield*, *energy*, *capital cost*,)

Optimization Problem: example

Computer Aided Simulation of Chemical Process: Lecture 1

Calculation procedure for optimization problem

Synthesis (& Design) Problem

Inputs and outputs are known but flowsheet, equipment parameters and condition of operation are unknown !

Separation technique - distillation, flash, extraction, membrane-based separation? How many unit operations are needed? What is the design of each equipment? **Synthesis/Design Problem: example**

Given - $F, \underline{x}^{F}, x_{1}^{D}, x_{2}^{B}$ V_1 Q_c Determine - optimal separation unit operation. 1 Assume distillation has L D been selected & only one F, x^F needed reflux ratio = L_0/D NF Determine, N, N^F, <u>P</u>, <u>V</u>, <u>L</u>, $\frac{T}{(not \ x_2^B)}, \frac{y_p}{RR}, \frac{x^D}{D} (not \ x_1^{\overline{D}}), \overline{x}^{\overline{B}}$ V_{N+1} Ν etc **U**r Subject to, $\varphi(\underline{x}^D, \underline{x}^B, Q_p)$ Q_c , cost data) = minimum, and, $x_1^D > 0.98 \& x_2^B >$ B 0.95

Calculation procedure for synthesis problem

Computer Aided Simulation of Chemical Process: Lecture 1

What is a Process Simulator?

An *Engineering Tool* which performs, * Automated calculations * Material and/or energy balances * Physical property estimations * Design/rating calculations * **Process optimization**

It is not a Process Engineer !

What is a Process Simulator? ASPEN

It is not a Process Engineer !

What is a Process Simulator? PROII

It is not a Process Engineer !

Simulation Problem Definition -

What information do we need?

Simulation Problem Definition -

What do we need to select (depends on simulation model)?

Table 7.1 Simple Modules of Unit Operations (Mass Balances Only)

Table 7.2 Rigorous Models of Unit Operations

Table 7.3 Partial List of Thermophysical Properties

Property	Property Type	Model/Algorithm	Parameters
Activity coefficient	Liquid-phase component in a mixture	GE-models ^a (Wilson, NRTL, UNIQUAC, UNIFAC)	Size and volume parameters (molecules or groups); interaction parameters
Fugacity coefficient	Liquid- or vapor-phase component property in a mixture	Equations of state (cubic); PC-SAFT	Cubic EOS (critical properties, acentric factor, binary interaction parameters); PC-SAFT parameters
Vapor-liquid saturation point	Mixture phase equilibrium property	ΔG minimization (y- ϕ approach or ϕ - ϕ approach)	EOS and GE-model parameters, composition of one coexisting phase plus temperature or pressure
VLE phase diagram	Multiple calculations of VL saturation points	ΔG minimization (γ - ϕ approach or ϕ - ϕ approach)	
LLE phase diagram	Multiple calculations of LL saturation points	ΔG minimization (γ-γ approach); not Wilson GE-model	GE-model parameters
VLLE phase diagrams	Two liquid phases in equilibrium with a vapor phase—ternary or more compounds	ΔG minimization (γ - ϕ approach or ϕ - ϕ approach); not Wilson GE-model	
SLE saturation	Composition of solid in equilibrium with a liquid mixture as a function of temperature	ΔG minimization (γ-approach); solid phase assumed pure	GE-model parameters plus heat of fusion and melting temperature of the solid
Density	Pure compound or mixture; function of temperature and pressure	Equation of state; corresponding states; correlations	Critical props., acentric factor, correl. coefs., mixing rules
Vapor pressures	Pure component, temperature-dependent property	Equation of state; Antoine correlation	Critical properties, acentric factor, Antoine coefs.

Available options in simulators for thermo-models: these models play a very important role

Steady state simulation

- Convergence technique
- Convergence criteria
- Number of iterations

Available options in simulators for methods of solution

Flowsheet for cyclohexane production

A Simple Example : problem formulation Consider: A benzene feed stream & a hydrogen feed stream with methane as an impurity ! We know:

benzene + hydrogen = cyclohexane reaction takes place in vapor phase & there is 99.9 % conversion of benzene; reactor operates at 497.2 K

We would like to obtain: pure cyclohexane

Which simulation problem do we have ? Which phase equilibirum model to use? What type of models do we have? Which method of solution to employ?

A Simple Example

Consider: A benzene feed stream & a hydrogen feed stream with methane as an impurity !

We know: benzene + *hydrogen* = *cyclohexane*

reaction takes place in vapor phase & there is 99.9 % conversion of benzene; reactor operates at 497.2K

We would like to obtain: pure cyclohexane

we need, a mixer, a reactor, a separator, a divider, plus utility units (pumps, compressors, & heat exchangers) - we have a flowsheet!

Which simulation problem do we have ?

A Simple Example

Consider: A benzene feed stream & a hydrogen feed stream with methane as an impurity !

We know: benzene + hydrogen = cyclohexane

reaction takes place in vapor phase & there is 99.9 % conversion of benzene; reactor operates at 497.2 K

We would like to obtain: pure cyclohexane

we need, a mixer, a reactor, a separator, a divider, plus utility units (pumps, compressors, & heat exchangers) - we have a flowsheet!

We have the found the equipment parameters and the design of reactor, purge, distillation column, heat exchangers, & compressors

Which simulation problem do we have ?

Today: lecture 1a: process simulation & prerequisites – afternoon tutorial: introduction to simulators

