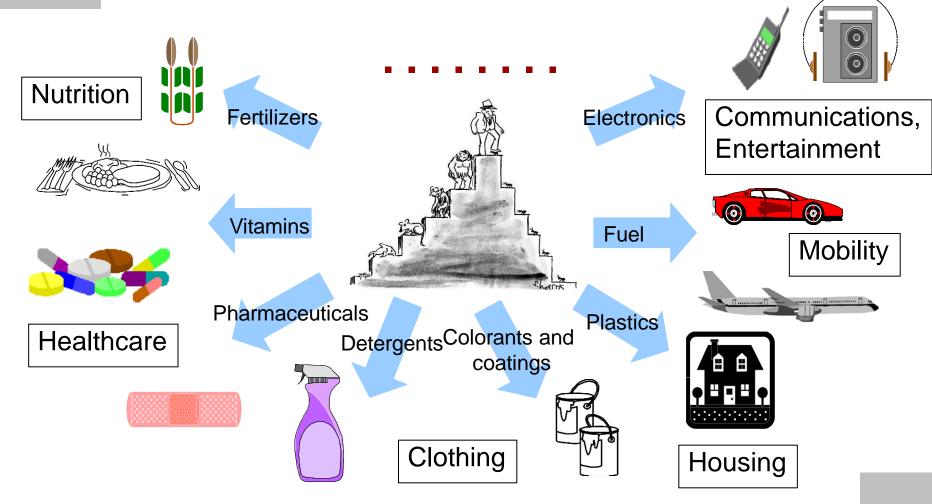
# Innovative & Sustainable Chemical-Process Analysis, Design & Synthesis: Introduction

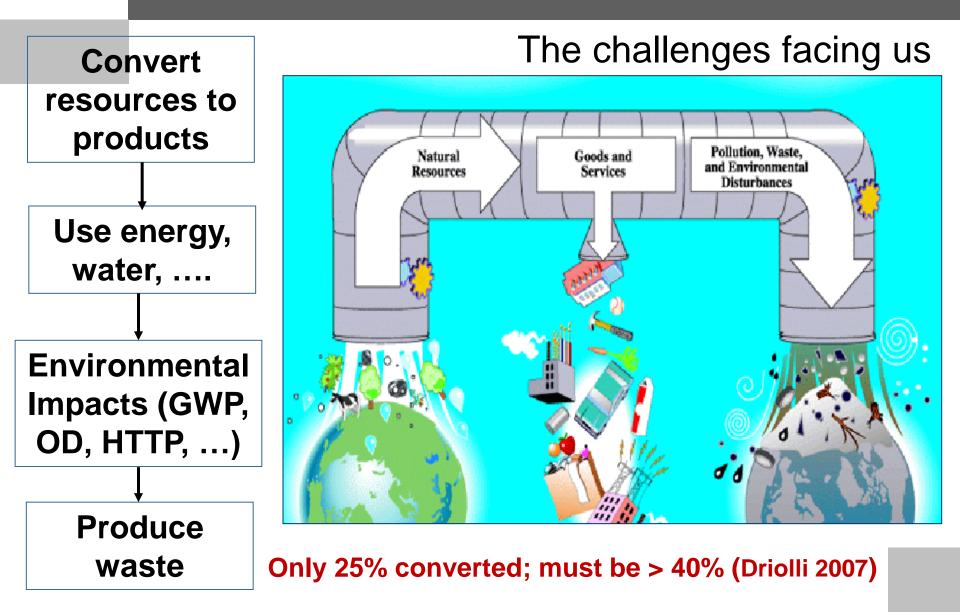
# Anjan K Tula\* & Rafiqul Gani\*

Department of Chemical & Biochemical Engineering Technical University of Denmark DK-2800 Lyngby, Denmark <u>rag@kt.dtu.dk</u>


### \*PSEforSPEED.com

Sustainable Product-process Engineering, Evaluation & Design

# The big picture


# Master of the planet earth – how did we get there?

## **Positive contributions to society**



Our survival depends on the products we make from the resources we have

# Is our future sustainable? - motivation

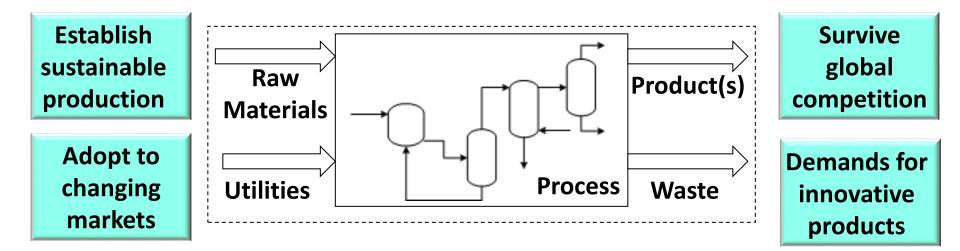


# The chemical product tree

## Question of what, why & when (how)?

| Refined chemicals & Consumer products (~3000)<br>Plastics, Pharmaseuticals, Dyes, Solvents, Fertilizers, Fibres, Dispensers, Cosmetics                                                                                                                                                                                   |                  | High             |                                            | Low             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|--------------------------------------------|-----------------|
| Intermediate Products (-300)<br>Methanol, Vinyl chloride, Styrene, Urea, Formaldehyde, Ethylene oxide, A œtic acid,<br>A cryloni trile, Cyclohexane, A crylic acid,<br>Basic Products (-20)<br>Thylene, Propyene, Butadiene, Benzene, Synthesis-gas, A cetylene,<br>A mmonia, Sulfuric acid, Sodium hydroxide, chlorine, | > Product price> | → Molecular size | <ul> <li>Number of alternatives</li> </ul> | Production rate |
| Raw Materials (~10)<br>Petroleum, Natural Gas, Biomass, Roack, Salt, Phosphate,<br>Sulfur, Air, Water,                                                                                                                                                                                                                   |                  | Low              | 1                                          | High            |

# Which problem to solve?

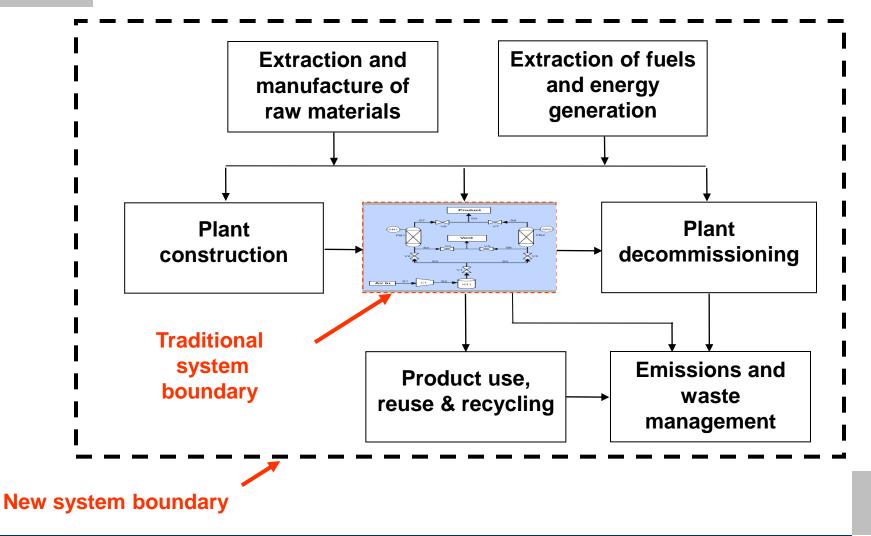

Stages in the life of a process

- **1. Board of Directors' Design Problem**
- **2. Discovery of possible new projects**
- 3. Feedback & customer reaction
- 4. Planning & organizational design
- 5. Preliminary (conceptual) process design
- 6. Layout & three dimensional modelling
- 7. Construction
- 8. Startup & commissioning
- 9. Plant Operation
- **10. Debottelnecking**
- **11. Decommissioning**

Interested to solve the conceptual process design problem\*

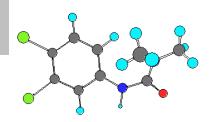
New definition of process design problem

# Chemical and bio-based industry faces enormous challenges to achieve and/or respond to:



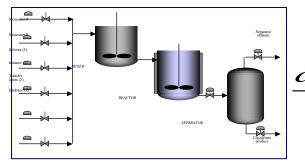

## Processes need to be:

Sustainable (Economically feasible; Reduced waste; Utility efficient; Environmentally acceptable); Safe; Operable; .....


# New system boundary definition

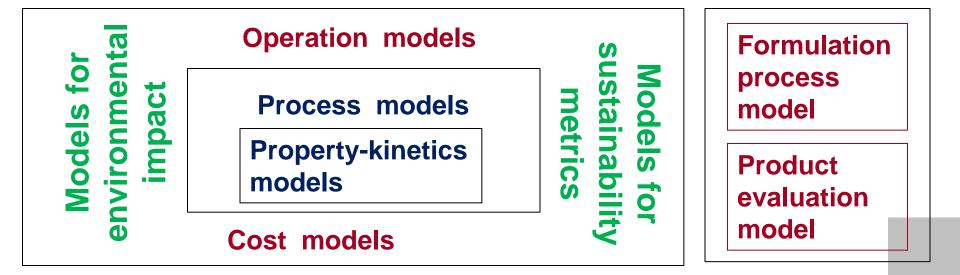
SYSTEM (from 'cradle to grave')



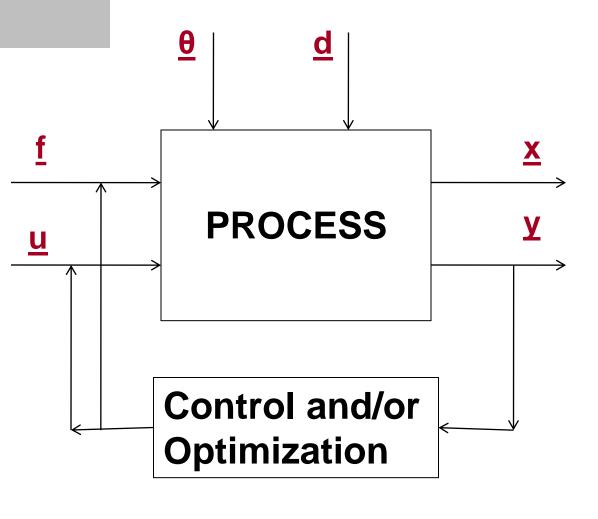

# **Background Information**

# Knowledge-data-models




## **Property models**

$$Log P_i = A_i + [B_i/(C_i + T)]$$




#### **Process models**

$$\frac{dm_{i}}{dt} = f_{in,i} - f_{out,i} - r(m,T,P)V; i = 1, NC$$



# Models and relationships



**Models: Process/property**  $d\underline{x}/dt = f(\underline{f}, \underline{u}, \underline{d}, \underline{\theta}, \underline{x})$  $\mathbf{y} = \mathbf{g}(\mathbf{x})$  $\underline{\beta} = \beta (\underline{C}, \underline{f}, \underline{x})$ **Sustainability Metrics**  $\underline{S}_{e} = S_{e} (\underline{f}, \underline{u}, \underline{x}, \underline{y}, \underline{d}, \underline{\theta})$  $\underline{\mathbf{S}}_{i} = \mathbf{S}_{i} (\underline{\mathbf{C}}, \underline{\mathbf{f}}, \underline{\mathbf{x}}, \underline{\mathbf{y}}, \underline{\theta})$  $\underline{S}_{s} = S_{s}$  (size, profit, ?) **Safety & Hazards**  $\underline{H}_{c} = Hc (\underline{C}, \underline{f}, \underline{x}, \underline{y}, \underline{d}, \underline{\theta})$  $\underline{Hp} = H_{p} (\underline{u}, \underline{f}, \underline{x}, \underline{d}, \underline{\theta})$ 

Mathematical model derivation

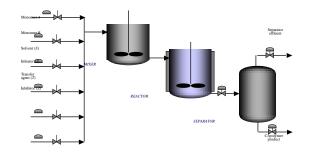
# $\textbf{Fobj} = \min \{ C^{T}\underline{Y} + f(\underline{x}, \underline{y}, \underline{u}, \underline{d}, \underline{\theta}) + S_{e} + S_{i} + S_{s} + H_{c} + H_{p} \}$

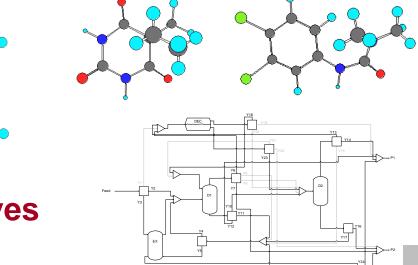
**Process-product model** 

 $\mathsf{P} = \mathsf{P}(\underline{f}, \underline{x}, \underline{y}, \underline{d}, \underline{u}, \underline{\theta})$ 

**Process-product** 

 $\mathbf{0} = \mathbf{h}_1(\underline{\mathbf{x}}, \underline{\mathbf{y}})$ 


**Equipment-material** 


 $0 \ge g_1(\underline{x}, \underline{u}, \underline{d})$ 

 $0 \ge g_2(\underline{x}, \underline{y})$ 

**Flowhseet-chemical alternatives** 

 $\mathbf{B} \ \underline{\mathbf{x}} \ \mathbf{+} \ \mathbf{C}^{\mathsf{T}} \underline{\mathbf{Y}} \geq \mathbf{D}$ 





Generic problem formulation

# **Fobj** = min { $C^{T}\underline{y} + f(\underline{x}, \underline{y}, \underline{u}, \underline{d}, \underline{\theta}) + S_e + S_i + S_s + H_c + H_p$ } (1)

- $0 = h_1(\underline{x}, \underline{y})$  process constraints (Eq. 2)
- $0 = P(\underline{f}, \underline{x}, \underline{y}, \underline{d}, \underline{u}, \underline{\theta}) \text{ process model (Eq. 3)}$
- $\underline{\theta} = \underline{\theta}(\underline{f}, \underline{x}, \underline{y}) \qquad \text{property model (Eq. 4)}$
- $I_1 \le g_1(\underline{x}, \underline{u}, \underline{d}) \le u_1$  process variable constraints (Eq. 5)
- $I_2 \le g_2(\underline{x}, \underline{y}) \le u_2$  molecular structure constraints (Eq. 6)
- $B \underline{x} + C^{T}\underline{y} \ge D$  process networks (Eq.7)

<u>x</u>: real-process variables; <u>y</u> integer-decision variables;
 u: process design variables; d: process input variables;
 θ: property; B, C, D coefficient matrices

Generic problem formulation & solution

# $Fobj = \min \{C^{T}y + f(\underline{x}, \underline{y}, \underline{u}, \underline{d}, \underline{\theta}) + S_e + S_i + S_s + H_c + H_p\}$ (1)

- $\mathbf{0} = \mathbf{h}_1(\underline{\mathbf{x}}, \underline{\mathbf{y}}) \tag{Eq. 2}$
- $0 = P(\underline{f}, \underline{x}, \underline{y}, \underline{d}, \underline{u}, \underline{\theta}) \quad (Eq. 3)$
- $\underline{\theta} = \underline{\theta}(\underline{f}, \underline{x}, \underline{y})$  (Eq. 4)
- $I_1 \leq g_1(\underline{x}, \underline{u}, \underline{d}) \leq u_1$  (Eq. 5)
- $I_2 \le g_2(\underline{x}, \underline{y}) \le u_2$  (Eq. 6)
- $\mathbf{B} \, \underline{\mathbf{x}} + \mathbf{C}^{\mathsf{T}} \underline{\mathbf{y}} \geq \mathbf{D} \tag{Eq.7}$

Problems:

LP, NLP, MILP, MINLP, process simulation, .....

Solution strategies: Direct, Decomposition based

<u>x</u>: real-process variables; <u>y</u> integer-decision variables;
 u: process design variables; d: process input variables;
 θ: property; B, C, D coefficient matrices

# The concepts

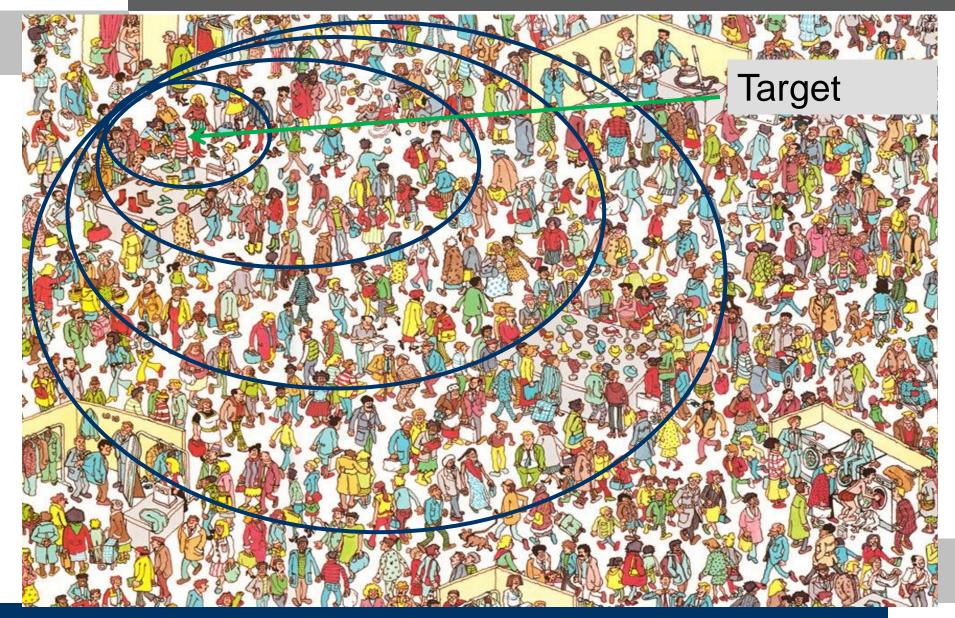
# What is sustainability?

## How do we go from here ...

Azapagic 2013



SC-PADS workshop, NIT-Tiruchirapalli, 28/8 - 1/9, 2017 (Lecture-0)


# What is sustainability?

# ..... Somewhere here?

Azapagic 2013

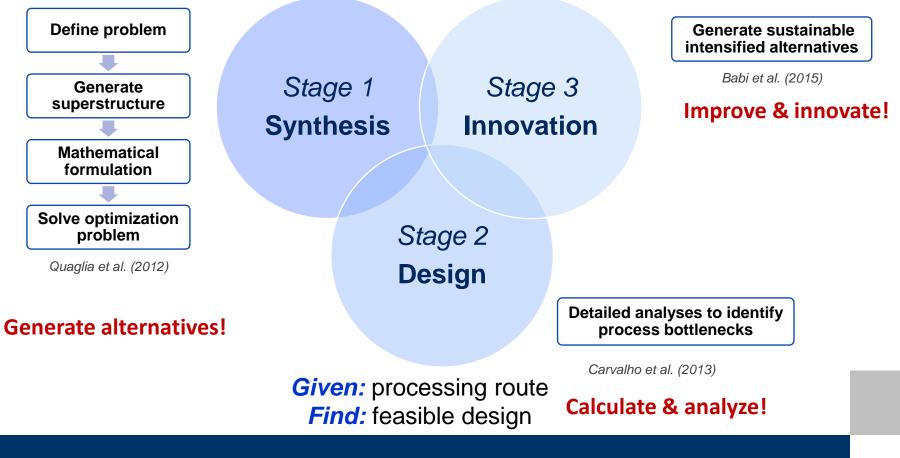


# Mathematical problem solution - concept

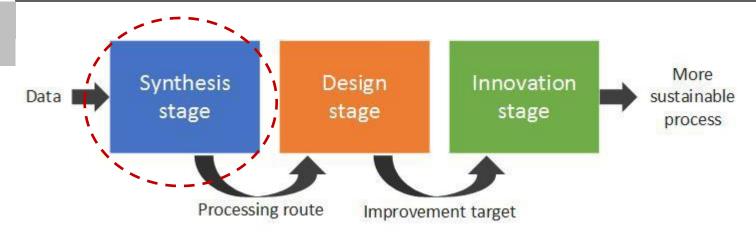


## Solution strategy : Decomposition method (example)

|                        | $\min 2x_1 + 3x_2 + 1.5y_1 + 2y_2 - 0.5y_3$ | <b>V</b> <sup>(1)</sup> |
|------------------------|---------------------------------------------|-------------------------|
| Objective<br>function  | s1                                          |                         |
| Process                | $x_1^2 + y_1 = 1.25$                        | (2)                     |
| model                  | $x_2^{15} + 1.5y_2 = 3.0$                   | (3)                     |
| Process<br>constraints | $x_1 + y_1 \le 1.60$                        | (4)                     |
|                        | $1.333x_2 + y_2 \le 3.00$                   | (5)                     |
| Flowsheet              | $-y_1 - y_2 + y_3 \le 0$                    | (6)                     |
| constraints            | $y_1 y_2 = 1$                               | (7)                     |
| Variable               | $x_1, x_2 \ge 0$                            | (8)                     |
| bounds                 | $y_1, y_2, y_3 = \{0,1\}$                   | (9)                     |
|                        |                                             |                         |


Solution strategy: *Solve I*: Y1 = 1, Y2 = 1, Y3 =0; Y1= 1, Y2= 1, Y3 = 1 (only two feasible sets) *Solve II:* X1 = 0.5; X2 = 0.544 (for both sets of Y) Solve III: Eq. 4 & Eq. 5 are satisfied for both sets of Y and the calculated values of X *Solve IV:* Eq 1 = 6.132 for set 1; = 5.632 for set 2 Global optimal solution: set 2 (X1=0.5, X2=0.544, $Y_{1=1}, Y_{2=1}, Y_{3=1})$ 

Concept of 3-stages synthesis-design approach

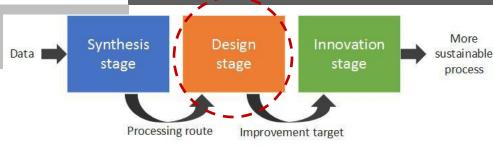

### **Decompose the problem into stages to manage the complexity**

*Given:* set of feedstock & products *Find:* processing route

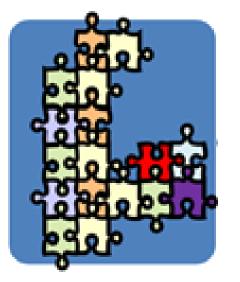
*Given:* feasible design (base case) *Find:* alternative more sustainable design



# Sustainable Product-Process Development



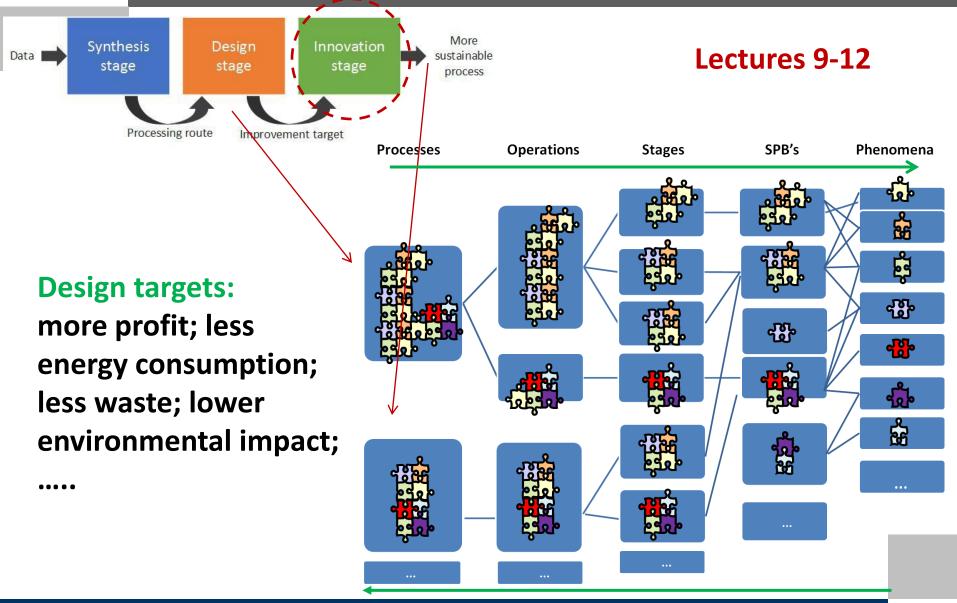

From the available information and supplied specification, determine one or more processing routes to convert identified raw materials to desired products




#### Lectures 1-3

# Sustainable Product-Process Development



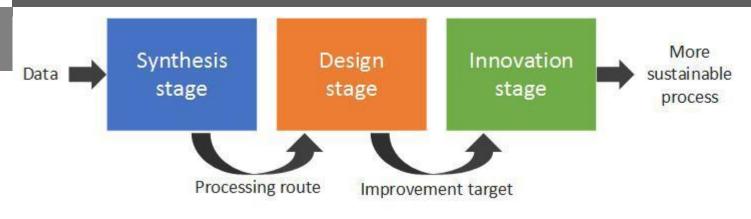

## Lectures 4-9



- Represent processing route as a process flowsheet
- Determine the designs of each unit operation to match the process specifications
- Perform process simulaton to verify and analyze the design
- Determine design targets for process improvement

**Design targets:** more profit; less energy consumption; less waste; lower environmental impact; .....

# Sustainable Product-Process Development




# **Solution Approach**

Many ways to solve the generic sustainable process synthesis-design-analysis problem. The multi stage-task approach:

- Decomposes the problem into 3-stages where a set of 12 tasks (work-flow) are performed
- Arranges the tasks in a specific sequence
  - Within each task, a set of decisions need to be made
  - Calculations are made to verify the decisions
  - Data generated in one task is used in the subsequent tasks

# Tasks for synthesis stage



•Task 1: Collect information on the product

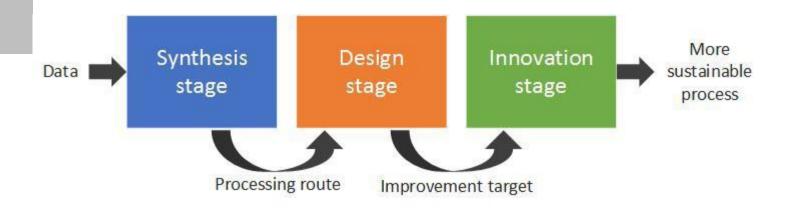
- Task 2: Collect information on the process; alternative paths to convert other raw materials to the desired product
- Task 3: Generate (and/or select) preliminary process flowsheet

•Task 4: Decide process conditions (such as reaction conversion, separation factor, purge, etc.) and perform a simple mass balance on the selected flowsheet

#### Tasks for design stage Data Synthesis stage Design stag

•**Task 4**: Decide process conditions (such as reaction conversion, separation factor, purge, etc.) and perform a simple mass balance on the selected flowsheet

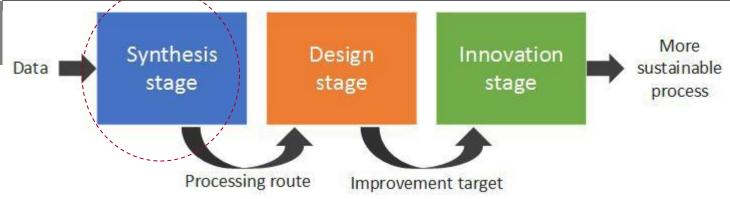
• Task 5: Based on the results from above, set temperatures and pressures on the process flowsheet


• Task 6: Based on the results from above, perform a simple mass & energy balance

•Task 7: Perform detailed process simulation – convert each of the simple models with the more rigorous option, one at a time, until all simple models have been converted.

• Task 8: Based on the simulation results from task 7, perform equipment sizing and costing calculations

• Task 9: Based on the results from tasks 1-8, perform an economic evaluation, using the current design as the "base case"


# Tasks for innovation stage



- **Task 9**: Based on the results from tasks 1-8, perform an economic evaluation, using the current design as the "base case"
- Task 10: Investigate if opportunities for heat and mass transfer exist. If yes, apply them and check by how much the cost of operation can be further reduced?
- •Task 11: Perform environmental impact analysis
- Task 12: Generate innovative alternatives with PI approach

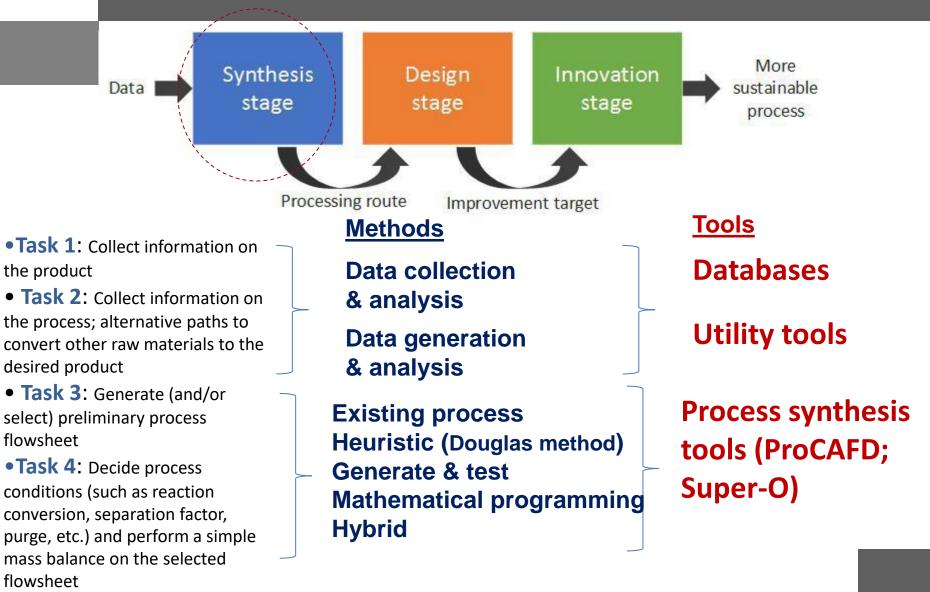
# **Methods & Tools**

## Synthesis stage: Methods & tools

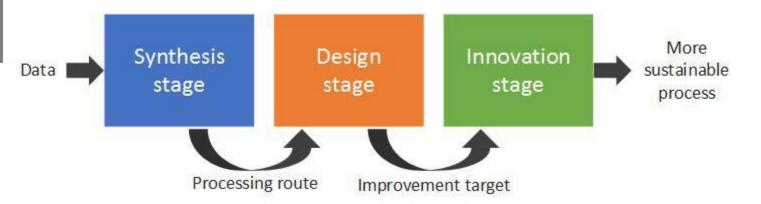


- Task 1: Collect information on the product
- Task 2: Collect information on the process; alternative paths to convert other raw materials to the desired product
- Task 3: Generate (and/or select) preliminary process flowsheet

•Task 4: Decide process conditions (such as reaction conversion, separation factor, purge, etc.) and perform a simple mass balance on the selected flowsheet


#### **Methods**

Data collection & analysis


**Data generation & analysis** 

- Existing process
- Heuristic (Douglas method)
- Generate & test
- Mathematical programming
- Hybrid

## Synthesis stage: Methods & tools



## Design-analysis stage: Methods & tools



• **Task 4**: Decide process conditions (such as reaction conversion, separation factor, purge, etc.) and perform a simple mass balance on the selected flowsheet

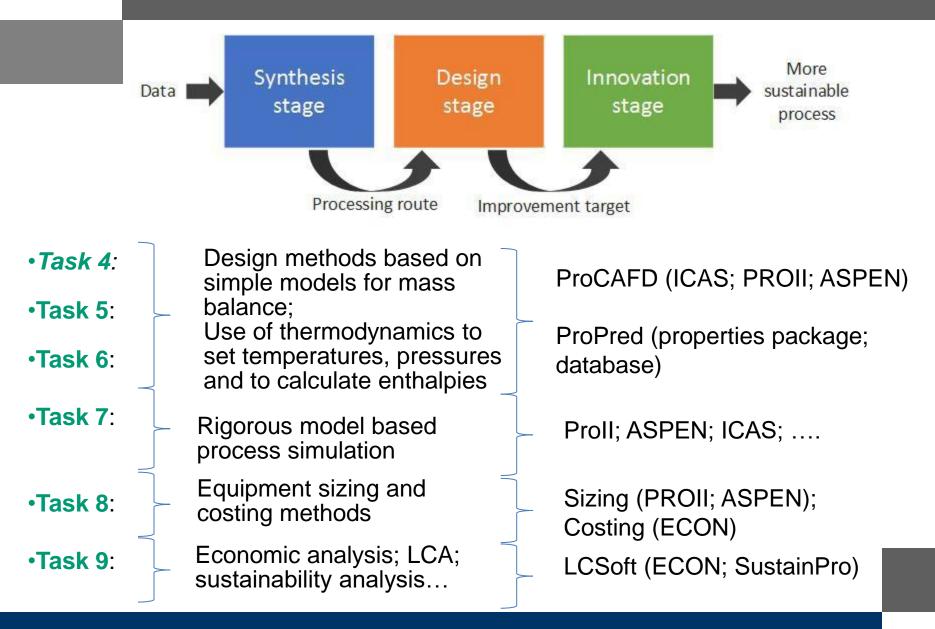
• Task 5: Based on the results from above, set temperatures and pressures on the process flowsheet

• Task 6: Based on the results from above, perform a simple mass & energy balance

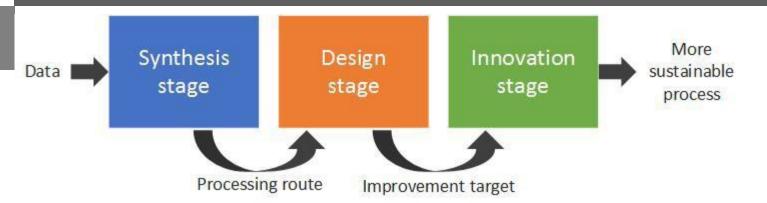
•Task 7: Perform detailed process simulation – convert each of the simple models with the more rigorous option, one at a time, until all simple models have been converted.

- **Task 8**: Based on the simulation results from task 7, perform equipment sizing and costing calculations
- **Task 9:** Based on the results from tasks 1-8, perform process analysis on the current design as the "base case" & define targets for improvement

Design methods based on simple models for mass balance;


Use of thermodynamics to set temperatures, pressures and to calculate enthalpies

Rigorous model based process simulation


Equipment sizing and costing methods

Economic analysis; LCA; sustainability analysis...

## Design-analysis stage: Methods & tools



## Innovation stage: Methods & tools

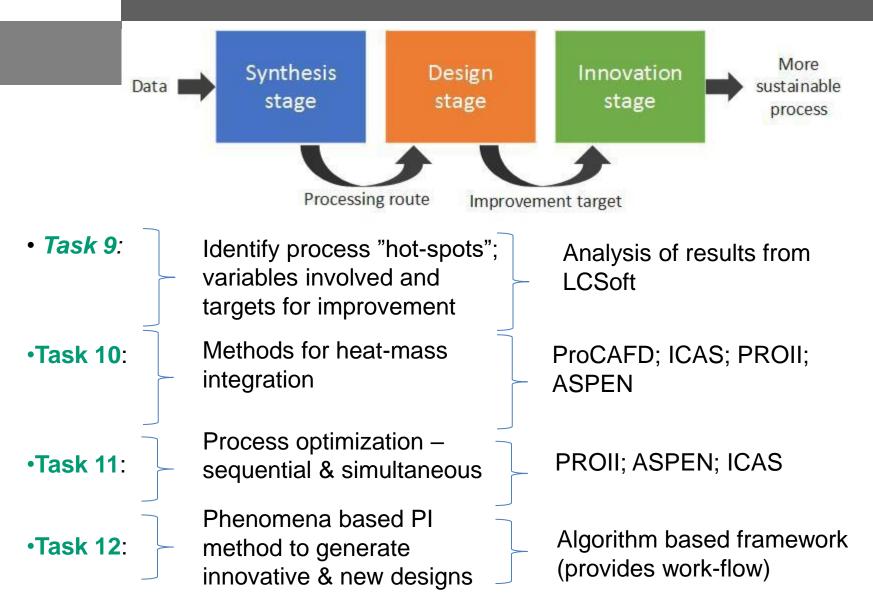


• **Task 9**: Based on the results from tasks 1-8, perform process analysis on the current design as the "base case" & define targets for improvement

• Task 10: Investigate if opportunities for heat and mass transfer exist. If yes, apply them and check by how much the cost of operation can be further reduced?

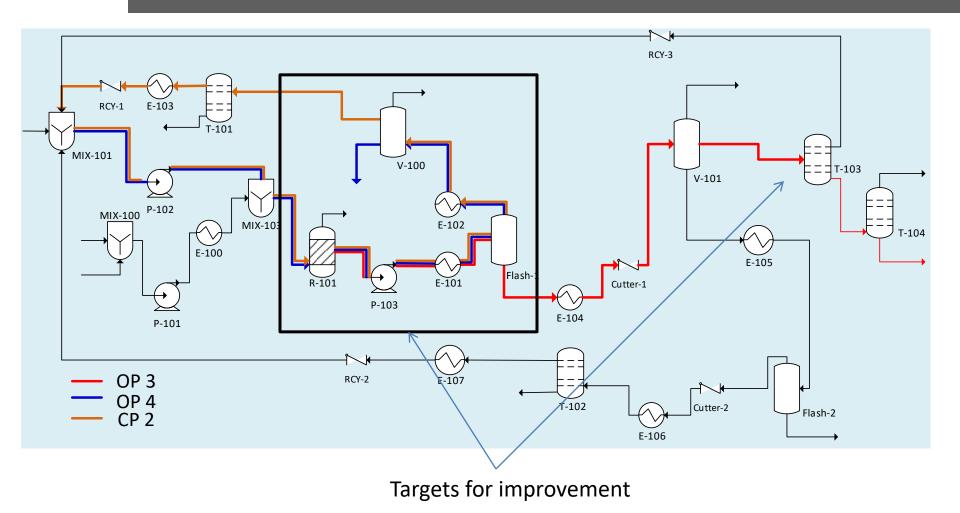
•Task 11: Investigate how the current design can be further improved; formulate process optimization problems

• Task 12: Generate innovative alternatives with PI approach


Identify process "hot-spots"; variables involved and targets for improvement

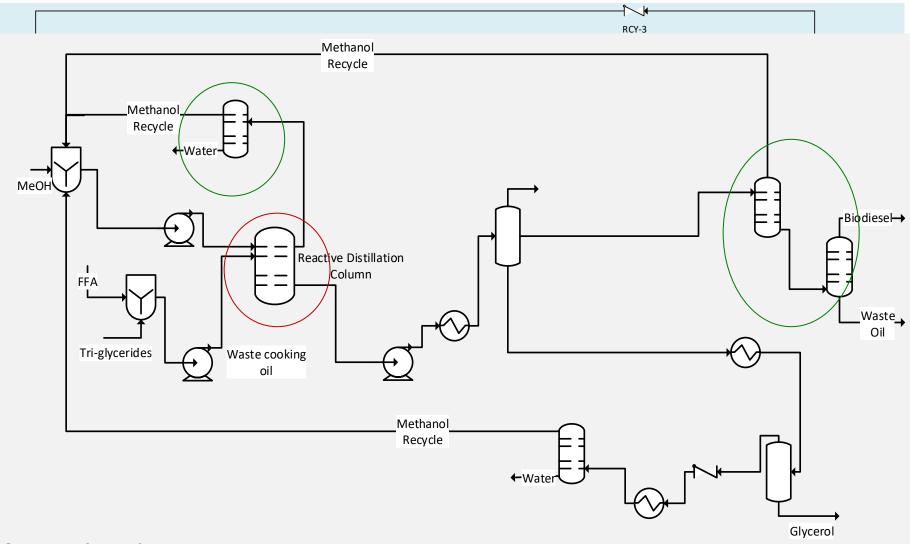
Methods for heat-mass integration

Process optimization – sequential & simultaneous


Phenomena based PI method to generate innovative & new designs

## Innovation stage: Methods & tools




# More sustainable design (visualization)

# Identify more sustainable (1): Base case

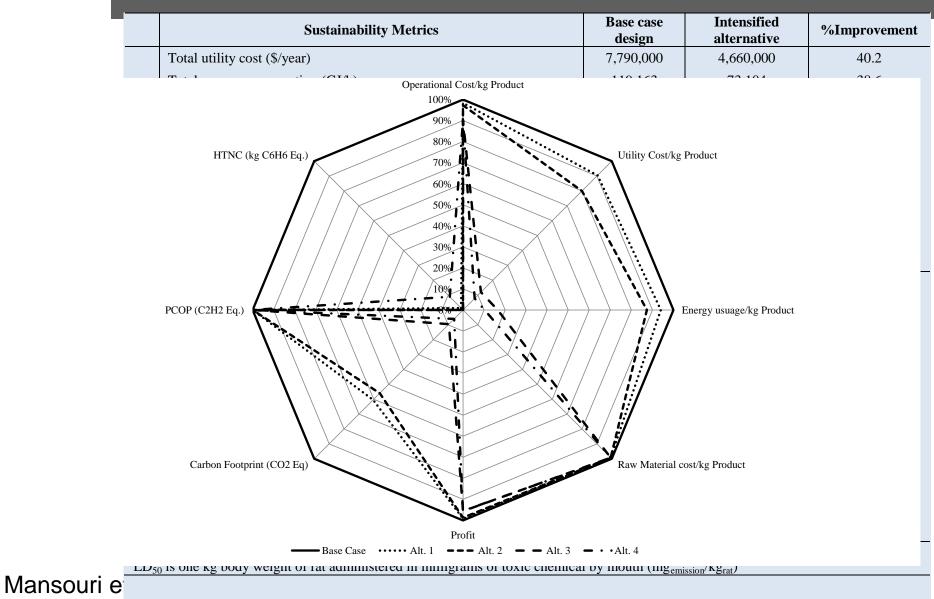


Mansouri et al. 2013

# Identify more sustainable (2) : PI solution



#### Mansouri et al. 2013


# Compare more sustainable (PI) alternatives

|      |                                                                                                                                                                                                                                               |                     | Sustainability Metrics                                                                | Base case<br>design | Intensified<br>alternative | %Improvement |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------------------------------------|---------------------|----------------------------|--------------|--|--|
|      |                                                                                                                                                                                                                                               |                     | Total utility cost (\$/year)                                                          | 7,790,000           | 4,660,000                  | 40.2         |  |  |
|      |                                                                                                                                                                                                                                               |                     | Total energy consumption (GJ/h)                                                       | 119.163             | 73.104                     | 38.6         |  |  |
|      |                                                                                                                                                                                                                                               | cs                  | product/raw material (kg/kg)                                                          | 0.94                | 0.94                       | 0            |  |  |
| MeOH |                                                                                                                                                                                                                                               | netri               | Energy/ products (GJ/kg)                                                              | 0.0025              | 0.0017                     | 32           |  |  |
|      |                                                                                                                                                                                                                                               | ce n                | Net water added to the system (m <sup>3</sup> )                                       | 0                   | 0                          | 0            |  |  |
|      |                                                                                                                                                                                                                                               | man                 | Water for cooling/product (m <sup>3</sup> /kg)                                        | 0.017               | 0.017                      | 0            |  |  |
|      |                                                                                                                                                                                                                                               | Performance metrics | Waste/raw material (kg/kg)                                                            | 0.032               | 0.026                      | 18.8         |  |  |
|      |                                                                                                                                                                                                                                               | Pe                  | Waste/products (kg/kg)                                                                | 0.034               | 0.028                      | 17.6         |  |  |
|      |                                                                                                                                                                                                                                               |                     | Hazardous raw material/product (kg/kg)                                                | 0                   | 0                          | 0            |  |  |
|      |                                                                                                                                                                                                                                               |                     | Number of unit operations                                                             | 9                   | 7                          | 22           |  |  |
|      | I<br>FFA                                                                                                                                                                                                                                      |                     | Total carbon footprint (kg $CO_2$ eq.)                                                | 0.183               | 0.143                      | 21.8         |  |  |
|      |                                                                                                                                                                                                                                               |                     | HTPI - Human Toxicity Potential by Ingestion (1/LD <sub>50</sub> )                    | 0.51811             | 0.51111                    | 0            |  |  |
|      |                                                                                                                                                                                                                                               |                     | HTPE - Human Toxicity Potential by Exposure (mg <sub>emiaaion</sub> /m <sup>3</sup> ) | 0.03558             | 0.03564                    | 0            |  |  |
|      |                                                                                                                                                                                                                                               |                     | GWP - Global Warming Potential (CO <sub>2</sub> eq.)                                  | 0.55214             | 0.55241                    | 0            |  |  |
|      | <br>Tri-gly                                                                                                                                                                                                                                   |                     | ODP - Ozone Depletion Potential (CFC-11 eq.)                                          | 5.18E09             | 5.18E-09                   | 0            |  |  |
|      |                                                                                                                                                                                                                                               | LCA                 | PCOP - Photochemical Oxidation Potential (C <sub>2</sub> H <sub>2</sub> eq.)          | 0.04968             | 0.04976                    | 0            |  |  |
|      |                                                                                                                                                                                                                                               | ΓC                  | AP - Acidification Potential (H <sup>+</sup> eq.)                                     | 0.00010             | 0.00010                    | 0            |  |  |
|      |                                                                                                                                                                                                                                               |                     | ATP - Aquatic Toxicity Potential (1/LC <sub>50</sub> )                                | 0.00366             | 0.00366                    | 0            |  |  |
|      |                                                                                                                                                                                                                                               |                     | TTP - Terrestrial Toxicity Potential (1/LD <sub>50</sub> )                            | 0.51811             | 0.51111                    | 0            |  |  |
|      |                                                                                                                                                                                                                                               |                     | HTC (Benzene eq.) - human toxicity (carcinogenic impacts)                             | 2062.7              | 1794.5                     | 13           |  |  |
|      |                                                                                                                                                                                                                                               |                     | HTNC (Toluene eq.) - human toxicity (non-carcinogenic impacts)                        | 1.3301              | 1.1795                     | 11.3         |  |  |
|      |                                                                                                                                                                                                                                               |                     | ET (2, 4-D eq.) - Fresh water ecotoxicity                                             | 0.00525             | 0.00490                    | 6.7          |  |  |
|      | $LC_{50}$ is lethal concentration (mg <sub>emission</sub> /kg <sub>fathead minnow</sub> )<br>LD <sub>50</sub> is one kg body weight of rat administered in milligrams of toxic chemical by mouth (mg <sub>emission</sub> /kg <sub>rat</sub> ) |                     |                                                                                       |                     |                            |              |  |  |

LD<sub>50</sub> is one kg body weight of rat administered in milligrams of toxic chemical by mouth (mg<sub>emission</sub>/kg<sub>rat</sub>)

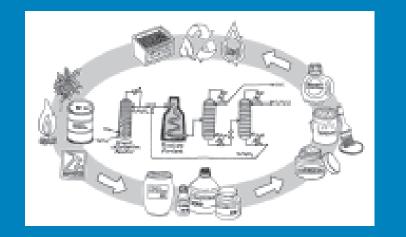
Mansouri e

# Compare more sustainable (PI) alternatives



# Workshop plan

- Day 1: Introduction & Stage-1 (methods-tools for Tasks 1-3); data collection, generation & analysis
- Day 2: Stage-1 (methods-tools for Task 3) & Stage-2 (methods-tools for Tasks 4-6); Super-O & ProCAFD
- Day 3: Stage-2 (methods-tools for Tasks 7-8); Process simulation with PROII/ASPEN); LCSoft (ECON)
- Day 4: Stag-2 (LCSoft LCA, sustainability, etc.) & Stage-3 (heat integration with ProCAFD-ICAS; PROIIuser module)
- Day 5: Stage-3 (simultaneous heat integration & optimization with PROII-user modules) and phenomenabased process intensfication (theory, method & application examples)


# Summary

- Sustainable process synthesis, design and analysis in 12 sequential steps
  - Guaranteed improved design compared to basebase
  - Non-tradeoff optimal solution
  - Important to first establish a base-case
  - Analyze the base-case to identify opportunities for improvement
  - Define targets for improvement
  - Apply PI-synthesis methods to find alternative designs that match the targets
- Introduction to ProCAFD software tool
- Integration of methods-tools needed to solve these problems

# Textbook: Process-Product Design (4th edition)

# PRODUCT AND PROCESS DESIGN PRINCIPLES

Synthesis, Analysis and Evaluation FOURTH EDITION



WARREN D. SEIDER + DANIEL R. LEWIN J.D. SEADER + SOEMANTRI WIDAGDO RAFIQUE GANI + KA MING NG

## **Published by Wiley**

Suitable for BSc, MSc level teaching of

- Product design
- Process design
- Integrated productprocess design