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Initial and boundary 

conditions

❖ Initial conditions needed for time 

varying problems

u(x,y,z,t) = f(u)  at t = 0

❖ Boundary conditions needed to 

set conditions on the balance 

volume surfaces.  3 main types 

exist:

▪ Dirichlet

▪ Neumann

▪ Robbins

Equation Types

Parabolic

Elliptic

Hyperbolic
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Boundary Conditions

Dirichlet condition

Neumann condition

Robbins (third) condition
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Solution methods for DPS models

Original model

Algebraic equations Differential equations

Finite difference (FD)

Finite element (FE)

Weighted residuals (WR)

Method of lines (MOL)

Shooting methods (SM)

Own reading: orthogonal collocation methods 
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Finite Difference Methods (FDM)

❖Popular and simple approach

❖Seeks to replace derivative terms with finite 

difference approximations (FDA)

❖Leads to large sets of algebraic equations 

(difference equations)

❖Handles most problems with accuracy 

adjustable via grid spacing or order of FDA
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Finite Difference Approximations (1)

❖ Based on a grid or mesh over the 1D or 2D domain

❖ Mesh can have equal or non-equal spacing

❖ Uses various manipulations of the Taylor Series to 

generate FDAs
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Finite Difference Approximations (2)

❖Taylor series

❖First order approximations

❖Second order approximations
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FDM - Application (1)

Unsteady diffusion

BCs:

u(0,t) = 1;  u(1,t) = 0

ICs:

u(x,0) = 2x ;         0 < x  ½ 

u(x,0) = 2 (1-x) ; ½ < x < 1























2

2

x

c
k

t

c



10

Lecture 6b: Advanced Computer Aided Modelling

FDM - Application (2)

❖Governing equation        Finite difference form

❖Rearrange to:

gives a set of algebraic equations to be solved explicitly

❖Apply boundary conditions to difference equations

❖Severe restrictions on r due to numerical stability of

0 < r  ½
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FDM – Crank-Nicholson methods

❖Introduce some implicit character to FDA of 

governing equation

❖Improve numerical stability

❖Three main methods

- fully explicit method (cf. Euler)

- Crank-Nicholson (original) method

- fully implicit method (cf. Backward Euler)
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Crank-Nicholson mesh

Explicit method:

ui,j only

C-N method:

mix ui,j+1; ui,j

Implicit method:

ui-1,j+i, ui,j+1, ui+1,j+1
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Crank-Nicolson application

Governing equation:

C-N-FDA:

Stable for:
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C-N - Stability Regions

r
0.5

0.5

0.25 1

1


Stable, no modes

oscillate

Stable, some modes

oscillate

Unstable
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Solving the finite difference equations

❖Obtain matrix form: Auj+1 = f(uj)

(This is equivalent to the system: Ax=b)

❖Solve using linear matrix methods

- Matlab solution:   x=A\b

- Matlab factorization:  [L,U]=lu(A) ;

y=L\b ; x=U\y ;

❖Iterate if nonlinear (F(x)=0)

- Matlab solution:  e.g. ‘fsolve’ routine
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C-N solution example

for

get:
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FD methods for Parabolic Equations

Mesh layout Mesh definition

u(ix, jy, ut) = ui,j,n

where

x= ix

y = jy

t = nt
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FDM example - Parabolic Equation

❖Governing equation:

❖Explicit FDA:

❖Stability limit is:
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❖Neumann condition

❖Create “false” boundary

❖Write central difference approximation for BC at j=N.

❖Eliminate fictitious value Ti,N+1 by substitution of FDA of BC 

into FDA of equation.

Handling Derivative Boundary Conditions
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Method of Lines (MOL)

Key features:

❖Converts parabolic PDEs to ODEs

❖Discretizes the spatial variable(s) by using 

finite difference approximations

❖Can result in sets of stiff ODEs

❖Simple computer implementation
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Governing equation:

Discretize spatial terms to get:

Apply appropriate boundary conditions (at i=0, i=N)

Method of Lines - application
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Method of Lines - example

Problem:

MOL gives:

BCs give:
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Method of Lines – example (cont.)

Final equation set:
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Method of Weighted Residuals (MOWR)

Key characteristics:

It is a polynomial approximation method with the 

following steps:

- choose a polynomial form

- fit the BCs to the polynomial

- substitute approximate solution into PDE

- distribute the error by making residual zero:

•collocation, least squares

•Galerkin, subdomain, moments

It is a powerful technique with accurate results 

from low order polynomials



25

Lecture 6b: Advanced Computer Aided Modelling

MOWR - Application Example (1)

Problem:

Trial function:

Fit BCs:

Terms:
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MOWR - Application Example (2)

Form the residual equation (substitute trial function):

for collocation at  x = ½,  = 1   residual R(½, 1)=0 is:

Approximate first order solution is therefore:
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MOWR - Orthogonal Collocation

❖Similar to standard collocation except polynomials are 

orthogonal with predefined roots

❖Solve directly for solution y(x) and collocation point x;

❖Use of symmetric or non-symmetric polynomials depending 

on whether problem has symmetry, e.g.

❖Handles major geometries easily (built into polynomials)

- planar

- cylindrical

- spherical
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Orthogonal Collocation with Symmetry

Problem:  Diffusion and reaction in a planar catalyst pellet

BCs

Residual equations obtained by substituting for terms as:

For N=1:

BC:

Solution:
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Example: OC without symmetry

Problem:  

Residual equations:

BCs:

For N=1:

Solution is:
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Orthogonal collocation on elements

❖Useful technique for problems with sharp 

fronts

❖Extension of standard OC method

❖Easily implemented technique (convert 

PDEs and ODEs with polynomial coeffi 

cients A as a function of time; solve ODEs)

❖Allows low order polynomials on the 

elements

❖Computationally efficient
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Example: OC for parabolic PDE

Problem: 

BCs: ICs: 

Residual equations:

BCs:
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Modelling exercise – 5c: Solution of PDEs
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Solve the following problems with MoT 

* 2nd order PDE

* Unsteady state heat-transfer

* 1st- & 2nd-order PDAE

Model equations will be given in class


