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Equation Types
Parabolic

oc _ (o’
ot Ox?

Elliptic

Hyperbolic

o°c o°c
—> =D —
ot OX

Initial and boundary
conditions

¢ Initial conditions needed for time
varying problems

u(x,y,z,t) =f(u) at t=0

“+ Boundary conditions needed to
set conditions on the balance
volume surfaces. 3 main types
exist:

= Dirichlet

= Neumann

= Robbins

Lecture 6b: Advanced Computer Aided Modelling
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Boundary Conditions

- Dirichlet condition
% ® = f(X,Y) onZ

Neumann condition

oD
EZQ(X,)’) on Zz

3 Robbins (third) condition

a0 YO+ A Y) S = (0 y) on Y

Lecture 6b: Advanced Computer Aided Modelling
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Solution methods for DPS models

Original model

/ \

Algebraic equations Differential equations
Finite difference (FD) Method of lines (MOL)
Finite element (FE) Shooting methods (SM)

Weighted residuals (WR)

Own reading: orthogonal collocation methods

Lecture 6b: Advanced Computer Aided Modelling
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Finite Difference Methods (FDM)

**Popular and simple approach

*»»Seeks to replace derivative terms with finite
difference approximations (FDA)

»Leads to large sets of algebraic equations
(difference equations)

*»Handles most problems with accuracy
adjustable via grid spacing or order of FDA

Lecture 6b: Advanced Computer Aided Modelling
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Finite Difference Approximations (1)

¢ Based on a grid or mesh over the 1D or 2D domain

Grid | | | |
definition X"i " « y
o X; =a+1.AX 0<Ii<N _
Grid points Uniform mesh
AX = (b-a)/N

¢ Mesh can have equal or non-equal spacing

¢ Uses various manipulations of the Taylor Series to
generate FDAS

Lecture 6b: Advanced Computer Aided Modelling
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Finite Difference Approximations (2)

*:*Taylor series  u(x +Ax) =u(x;)+Axu’(x, )+%Ax2 "(X,) + 615 AXCU" (% ) +K

u(x;, —AX) = u(x,) — Axu’(x. )+%Ax2 "(X. )—%Ax3 "(x ) +K

du(x;) _Uj,—U

| = ~ L +0(AX)
»First ord imati o) s
o0 —11]-
#First order approximations |, _ du(q) _ui-ts g0
dx AX
i : ,_ du(X;) Uiy —Uiy 2
< Second order approximations Ui =g, = on, T O(AXT)
" d U(X ) ul—l— _Zui +ui— 2
Ui =—"3 L o L +0(AX?)

Lecture 6b: Advanced Computer Aided Modelling
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FDM - Application (1)

Unsteady diffusion .
2
@8 2e L .
ot 8)(2 u
unknown values j+1 ~ i, j+1
¥ U

BCs: T e
U(O,t) = l’ U(l,t) — O known values | v P i1 ® ij ® 41,
ICs: = - X
u(x,0) = 2x; 0<x<% . oM
U(X,O) =2 (1-X) Hh<x<l u=f(x)

Lecture 6b: Advanced Computer Aided Modelling
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s Governing equation Finite difference form
@_u _k o°u Uy et = Ui k(uiﬂ,j —2U; j +Uj_q ; j

ot ox° At AX*
**Rearrange to:

Ui joa = Ui j +T(Ui_g j —2U; j +Ujq )

At
AX?

gives a set of algebraic equations to be solved explicitly

*»* Apply boundary conditions to difference equations
s Severe restrictions on r due to numerical stability of
O<r <%

‘ Lecture 6b: Advanced Computer Aided Modelling
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FDM — Crank-Nicholson methods

“*Introduce some implicit character to FDA of
governing equation
“*Improve numerical stability
s Three main methods
- fully explicit method (cf. Euler)
- Crank-Nicholson (original) method
- fully implicit method (cf. Backward Euler)

Lecture 6b: Advanced Computer Aided Modelling
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Crank-Nicholson mesh

unknown values of u

known values of u

» X

SPEED
t
A
. NN N
J+1 N\ N\ N\
u. .. u.. u ..
i-1,j ij i+1,]
i ¢ o ¢
=0
1=0 i-1 [ i+1

Explicit method:
u;; only

C-N method:

MIX Uj 495 Ui

Implicit method:
Uiy j+i, Uijr1r Uiesj+a

Lecture 6b: Advanced Computer Aided Modelling
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Crank-Nicolson application

7
Governing equation: ou _o°u
ot ox?
C-N-FDA:
Ui j+1 — Ui _ B ui+1,j+1_2ui,j+1+ui—1,j+1)\
At AXZ )
+(1—,8)(ui+1’j 2t
AX )
At 0.5
Stable for: I = > <
AX®  (1-20)

Lecture 6b: Advanced Computer Aided Modelling
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C-N - Stability Regions

A
1 - - o _______
B Stable, no modes
oscillate
0.5 Stable, some modes

oscillate

Unstable

I | | >
0.25 0.5 1

Lecture 6b: Advanced Computer Aided Modelling
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Solving the finite difference equations

*»Obtain matrix form: Au;,, = f(uy)
(This is equivalent to the system: Ax=Db)

*s*Solve using linear matrix methods
- Matlab solution: x=A\b
- Matlab factorization: [L,U]=lu(A) ;
y=L\b ; x=U\y ;
»Iterate if nonlinear (F(x)=0)
- Matlab solution: e.g. ‘fsolve’ routine

Lecture 6b: Advanced Computer Aided Modelling
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4 -1 U j11 Ug j + Uy ;
-1 4 -1 Uy iy | | Uy +Us,
O O O M M
O O O M M
O O O M M
O O O Ui | |M
O O O M M
O O O M M
-4 4 -1|M M
-1 4 Ugjn Ug,j + Uio, j

Lecture 6b: Advanced Computer Aided Modelling




pSE for

SPEED . .
FD methods for Parabolic Equations
Mesh layout Mesh definition
. U(IAX, JAY, UAL) = U;;
| " where
. X= 1AX
y = JAy
° t = nAt

Lecture 6b: Advanced Computer Aided Modelling
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FDM example - Parabolic Equation

<*Governing equation: U _ [511 )
ot

’:’EXpliCit FDA: Ui jn+1 — Ui jn k[ i1,j,n —¢Uj, j n T Ui, n)

|J—1n |Jn+u| j+1n
Ay*®

+
x> Ay

% Stability limit is: k( 1 1szt§1
A 2

Lecture 6b: Advanced Computer Aided Modelling
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Handling Derivative Boundary Conditions
**Neumann condition %:—T on y=1

*»Create “false” boundary 5 L
N+1

|
_____________________________________
| |

N-1

s*Write central difference approximation for BC at j=N.

<*Eliminate fictitious value T, y,, by substitution of FDA of BC
Into FDA of equation.

Lecture 6b: Advanced Computer Aided Modelling
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Method of Lines (MOL)

Key features:

s Converts parabolic PDEs to ODEs

s Discretizes the spatial variable(s) by using
finite difference approximations

s»»Can result in sets of stiff ODES

s Simple computer implementation

Lecture 6b: Advanced Computer Aided Modelling
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Method of Lines - application

2
Governing equation: ou _o-u
ot ox*

Discretize spatial terms to get:
du;

—=fi@  i=0N

Apply appropriate boundary conditions (at 1=0, I=N)

Lecture 6b: Advanced Computer Aided Modelling
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Method of Lines - example

Problem: % = aVc+ AR(c)
C ocC :
—=0a r=0, —=Bi1,(c@,z)-c,(Z
o o w(C(,2) -c,(2))
MOL gives:
dc; Cin—2Ci+Ciyy [ a@~1)Ciyy—Ciy
—=a + +
dt [ Ar? ? 2Ar R
BCs give:
¢, —C, -0 Cnir —Cna _ BiW(CN _CW)
2Ar 2Ar
C,=G ,  Cny =Cyg +2ArBI, (Cy —C,)

Lecture 6b: Advanced Computer Aided Modelling
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Method of Lines — example (cont.)

Final equation set:

dc, 2ac
= C, —Cph)+
dt Arz ( 1 0) IBRC

%:a Ci—1—2(3i+ci+1+ a—-1)Ciy—Ciy FROi=1DN -1
dt Ar? r 2Ar

dcy _a(ZCN_l—I— Bi,, 2Ar(cy —C,,) — 2Cy

dt - + (a—1)(2ArBi, (cy —CW)]+ R,

Lecture 6b: Advanced Computer Aided Modelling
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Method of Weighted Residuals (MOWR)

Key characteristics:

It is a polynomial approximation method with the
following steps:
- choose a polynomial form
- fit the BCs to the polynomial
- substitute approximate solution into PDE
- distribute the error by making residual zero:
-collocation, least squares
*Galerkin, subdomain, moments

It I1s a powerful technique with accurate results
from low order polynomials

Lecture 6b: Advanced Computer Aided Modelling
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Problem: i{(lmu)@}:(lmu)@m[d—”j =0; u(0)=0, u@®)=1
dx dx dx dx

N+1

Trial function: @y =D_cX (power series in x)
i=0
$,(0)=0—c¢c, =0 BC at x=0
Fit BCs: dy () =1—>§Z+1 c=1 BCatx=1

N =X+Z A(Xi”—x) modified trial function

=X+ A (X°=X)
¢ =1+ A (2x-1) trial functions for N=1
[=2A

Lecture 6b: Advanced Computer Aided Modelling
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MOWR - Application Example (2)

Form the residual equation (substitute trial function):

R(X, ) = {L+alx+ A (X - x)[2A +aft+ A (2x -1
for collocationat x =%, o =1 residual R(*2, ¢,)=0 Is:
—% A’ +3A +1=0
A =-0.3166

Approximate first order solution Is therefore:

B =X— 0.3166(x* —x) ¢ =0.5795;at,x=0.5; (true = 0.5811)

Lecture 6b: Advanced Computer Aided Modelling
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MOWR - Orthogonal Collocation

s Similar to standard collocation except polynomials are
orthogonal with predefined roots

*»Solve directly for solution y(x) and collocation point x;

s Use of symmetric or non-symmetric polynomials depending
on whether problem has symmetry, e.g. &c

—=0 at x=0
oy
**Handles major geometries easily (built into polynomials)
- planar
- cylindrical
- spherical

Lecture 6b: Advanced Computer Aided Modelling
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Orthogonal Collocation with Symmetry

Problem: Diffusion and reaction in a planar catalyst pellet

d2
dx¥=¢2R(y)  R(Y)=y°
BCs %zO atx=0; y(1)=1

Residual equations obtained by substituting for terms as:

N +1

For N=1. Z Bjiyi =#°R(y;) j=1O)N ByyY1 +BroY, = 4%Y5
- B,=-25; B,=25
These are pre-calculated
Solution: —25+/6.25+104° coefficients
1= 2
2¢

Lecture 6b: Advanced Computer Aided Modelling
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Example: OC without symmetry

d du
Problem: &[C(U)&}:O d2u (du)?
u(0)=0 u(l)=1 (l+u)dx2 J{dx} =0
c(u)=1+u

N-+2 N+2 2
Residual equations: A+u;) Q. Bjiui{Z Aji“i} =0 J=2()(N+I1)
i=1 i=1

BCs: uy =0
Uy =1
3 3 2
For N=1: (1+U2)Z B,iu; J{Z AZiUiJ =0 j=2
i1 i1

(1+U,)(4u; —8u, +4ug) +(—u; +u3)? =0

uy=0 , uz=1 , u,=0.579

Solution is:

Lecture 6b: Advanced Computer Aided Modelling

29



PSEfor
SPEED

Orthogonal collocation on elements

« Useful technique for problems with sharp
fronts

< Extension of standard OC method

« Easily implemented technique (convert
PDEs and ODEs with polynomial coeffi
cients A as a function of time; solve ODES)

« Allows low order polynomials on the
elements

« Computationally efficient

Lecture 6b: Advanced Computer Aided Modelling 20
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Example: OC for parabolic PDE

Problem: a—U:E(D(u)a—uijR(u)
ot Ox OX
BCs: uo,t)=1 ; u@t)=0 ICs: Uu(x,0)=0
N+2 N +2 _
Residual equations: ZAJ.D(U )ZA. ,+R(u;)  J=1..,

BCs: u,(t)=1; u,,({t)=0

Solve as a set of N ODESs

Lecture 6b: Advanced Computer Aided Modelling
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Modelling exercise — 5c¢: Solution of PDES

Solve the following problems with MoT
*2nd order PDE
* Unsteady state heat-transfer
* 1st- & 2nd-order PDAE

Model equations will be given in class

Lecture 6b: Advanced Computer Aided Modelling
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