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Overview

« Types of problems encountered

« Dealing with higher order equations

« Types of numerical methods

« Error and stability of solution

+ Key techniques for ODES
» Runge-Kutta (single step methods)
« Linear multistep methods

« Solution of DAE systems
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Types of Problems

< Ordinary differential equations (ODES)
« Differential-algebraic equations (DAES)
« Algebraic equations (AEs)

Lecture 6a: Advanced Computer Aided Modelling
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Example Problems (exercise with MoT)
< Ordinary differential equations (ODEsSs)

Chemical reaction =k Yy, +K,¥,Y, y,(0) =1
®=kY, —K Y, Y5 —Ky,  ¥,(0)=0
R =ksY; y5(0) =0
« Differential - algebraic equations (DAES)
&= (F,—F,)/ A

Tank dynamics

FFQM
F,=C, \/(Pz _Ps)

P, =P, +pgz

+ Algebraic equations (AEs) 0=lyi kY, Ys :
Chemical reaction 0=k Yy, =K, ¥, Y5 —KsY;
steady state 0=k,y;

Lecture 6a: Advanced Computer Aided Modelling
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Numerical methods - basics

« Method which produces discrete solutions for a
continuous model

« Essentially involves solving sets of difference
eguations at each step

+ Methods have limited accuracy

« Methods have different characteristics
« Order (accuracy)
= Form
« Stability

Lecture 6a: Advanced Computer Aided Modelling
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Numerical solution — discrete character
ODE =-2y y(0)=1

Numerical solution versus true solution

L L L
-=- numerical solution
0.9 - — true solution
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Higher-order equations

For y" + f(y"",..,y",y,t)=0

i-1

d"y

dt™
Then we obtain :

<« Done using simple ay, _
transformation dt

dy,
dt

< Need to convert to
first order system Let y = y' =

Y,

Y,

dy
i f(y,y ...yt
it (Y., Y,y 1)

Lecture 6a: Advanced Computer Aided Modelling
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Example of transformation

d 2y
Second order function dt’
(0)=0: dY(O) 0
dt
d
Y=Y W= d—f =Y,
Make the transformations .
Ly
Y2 = g dt?
T R+ 28Ty, +Y, =
y;(0)=0; y,(0)=0
Substitute and rearrange then
K=Y,;

& = (Gl —y,) /1"~ 2¢ty, It;

Lecture 6a: Advanced Computer Aided Modelling
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Categories of methods

ODE Solver
Categories

AA

Based on step Based on equation
arrangement form

N N

Single step Multi-step Explicit Implicit

Lecture 6a: Advanced Computer Aided Modelling
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Single step methods

«+Single step methods

- Euler’s method (1768)

- Runge-Kutta

Note:a,b & ¢
are constants
of the method

yn = yn—l T hn f (yn—l’tn—l)

yn - yn—l + hn ijl bi I(i
ki = f (tn—l T Ci hn’ yn—l T Zsj:1 aijkj)

Lecture 6a: Advanced Computer Aided Modelling
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Multistep Methods

«Linear multi-step methods
K _ h K f
ijo &, yn+j - ijo 'BJ' N+ ]
fork=2& o, =1

yn+2 - _(ao yn T alyn+1) T h(ﬂo 1:n T 181 fn+1 T 182 1:n+2)

Euler explicit: 0y =0; 0, =1; a,=1; B,=0; B, =1: B,=0
Euler implicit: 0, =0; a, =1; a0, =1; B,=0; B, =0: B, =1

Lecture 6a: Advanced Computer Aided Modelling
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Explicit - implicit methods

Explicit Method

, o e G h1 n- ttn-
< Euler’s method (explicit) 1,|Ve2a|cnu|>a/1te1§yn_ll, th.1)

2. Calcualte y,
yn = yn—l T hn f (yn—l’ 1:n—l)
Implicit Method
_ ~__ Given:h,;y,att 4
«Backward Euler method (implicit) 1. Ppredicty, (k)
2. Correcty,through

yn — yn_l + hn f (yn ;tn) N-R scheme
Newton-Rahpson ~——— of » k
solution scheme BN (1_ hy@yjAy =—F(y")

F=Yn P 6) Yo =0 Ay oy oy k=01,
J = dF/dy

Lecture 6a: Advanced Computer Aided Modelling
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Characteristics of numerical methods

< All methods represent the Taylor series to some order

< All methods have a particular accuracy

Euler: Y. =V, + hnWOrder 1 accurate
g

Cause of error
< All methods Introduce a truncation error

Euler: | _hzcilty Order 2 error

Lecture 6a: Advanced Computer Aided Modelling
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Error and stability of solution

+ Causes of error
.accuracy of the method
Size of step
type of method (explicit, implicit)
.character of the problem

+ Stability
-Control of error each step

Lecture 6a: Advanced Computer Aided Modelling
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A

Local and global error

< Local error is the
error introduced per

true solutions through

starting points local errorftg .y Step
=
: true solution .
/ yO < Global error is the
ot accumulated error

global error at {,

(measures the difference
between the numerical

solution)

solution and the true

Lecture 6a: Advanced Computer Aided Modelling
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True versus numerical solution

«+Use a simple problem

y'=-Ay y0)=y,

y(tnl) Difference

between them is
the error

< True solution
y(t)=e"y(,. )=

<+Numerical solution (e.g. Euler’s method

yn — yn—l + h(_Ayn—l) — (l_ Ah)yn—l =

Lecture 6a: Advanced Computer Aided Modelling
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How global error occurs

+Global error g = y(t )_ y

«In terms of key operators S(z), K(z)
&, =S(AN)y(t, ;) - K(AN)Y,

= S(Ah)y(tn_l) — K(Ah)y(tn_l) - K(Ah)yn—l + K(Ah)y(tn—l)
=Ke, +(S-K)y(t,,)
gn — Kgn—l +Ty(tn—1)

/ T depends on the method accuracy

K depends on the problem AND the method used

Lecture 6a: Advanced Computer Aided Modelling
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Controlling error

#Need to ensure | K1

+Also control

Euler’s method for:

p=-2y  y(0)=1

y(t,)=e""y(t, )

y(t,) =1-2h)y(t, )

abs (K) = 0.5 at
h=0.25

Tyll=0th*)]y|

Numerical solutions versus true solution

the truncation error

1 \

L
— true solution

0.8 === h=0.1
=-=- h=0.25
0.6 —— h=0.75
h=1
0.4
0.2
-0.2
0.4
0.6 ~
0.8~
_1 L r W r r r o
0 0.5 1 1.5 2 2.5 3

time
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Stability Regions for Numerical ODE Solvers

<« Each method has a region where error propagation is stable
(A-stability region)

+ The region is where [K|<1

+ K depends on the steplength h, method and problem

- Euler method gives: K = (1+Ah)

- Backward Euler gives: K = 1/(1-Ah)
< The key factor of the problem is the eigen-values /li
< The region can be plotted on the complex plane
< The region can be defined by a simple test problem

Lecture 6a: Advanced Computer Aided Modelling 19
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Defining the A-stable region — Euler method
Test problem W= 1y

Euler (explicity method Yy =y . +h f(y ,,t )

gives Y, =Y, thiy,, =0+hA)y, , =K(hd)y,,

Im(ha)

K = (1+)h)

K|<1

Lecture 6a: Advanced Computer Aided Modelling
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A-stable region — Backward Euler method
Test problem we= Ay

Eulermethod y =y +h f(y,t)

gives y. =Yy ,+hiy =77

||||||

RRRRRR

Lecture 6a: Advanced Computer Aided Modelling
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A-stable region — Backward Euler method
Test problem W= 1y
Euler method y. =y ,+h f(y t)
1
giVGS Yn=Ynu T hA Y ey Yo = (1-h2) Y1
...... '7”“
¥
K = 1/(1-Ah)
| K| <1 e Retm)

Lecture 6a: Advanced Computer Aided Modelling 2
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" Im(ha)

- BDF methods
(backward
differentiation
formula)

D I
Re(hA) -4 2

Adams methods

(similar to implicit

Euler method

I Im(ha)

2

6

Stability regions for Linear-Multistep methods

* w w
Lecture 6a: AdvanB&&’ComputerAided Modelling
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Stability summary

¢ Every problem has an eigen-value spectrum
+ Non-stiff problems have a narrow spectrum
o Stiff problems have a wide spectrum

¢ The largest eigen-value determines stability for a
numerical method

¢ The largest step-length depends on the numerical method
and the maximum eigen-value of the problem being solved

» Explicit methods always have limited stability regions
> Implicit methods can have very large stability regions

Lecture 6a: Advanced Computer Aided Modelling ”



Key numerical methods

< Solvers for AEs % Linear multi-step methods
«* Euler’s method . Adams methods for
= MATLAB code easy to non-stiff problems

write (or MaoT)
= Terrible for stiff problems
Low accuracy
** Runge-Kutta methods
= MATLAB codes ODEZ23,

Backward
differentiation
formulae (BDF) for
stiff problems

ODEA45 (see MoT options) - High accuracy
- Good for non-stiff problems - Poor on highly
- High accuracy oscillatory problems

Lecture 6a: Advanced Computer Aided Modelling
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Solving differential-algebraic systems

dy

— =f(y,zt
ot (y,z,t)
0=g9(y,zt)

< Algebraic substitution
< Explicit ODE solvers
< Fully implicit solvers
< Structuring

Lecture 6a: Advanced Computer Aided Modelling
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Method 1: Algebraic substitution

dh
—— — (1 I / A
dt (F, )

F=C P —P
I_z_Cvz\/F)z_Pa
P, = P, + ogh

Substitute algebraic relations to get

dh 1

=2lc.(R-R—poh) —C,(P.+ pgh P

Lecture 6a: Advanced Computer Aided Modelling
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Method 2: Explicit ODE solver

y' = f(y,z1)
0=g(y,zt)

+ Knowy,att,

+ Solve 0=qg(y,,z,,t,) for z,

« Evaluate ODEs (using ODEA45 etc.)
« Advance step: y,t0 Y,

+ Return to step 1 or terminate at t;

Lecture 6a: Advanced Computer Aided Modelling
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Method 3: Implicit DAE solvers

Backward Euler and other implicit methods, solve:
y=hyt(y)+y

h = current steplength
v = known information (eg. vy,)
f(y) = right handside function

Solution of Backward Euler and other implicit methods

of
1—hy = |AV** = —F (V"
( 75jy (y")

Ayk+1 — yk+1_yk k:O,l,

Lecture 6a: Advanced Computer Aided Modelling
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Implicit DAE solvers e
Now extend to DAE set by adding the algebraic system.

of of
|—h7/5 —h7/@— Ayk+1_
K-+
—hj/ag —hj/ag _AZ '
NG 0z
Ayk+1:yk+1_

Azk+1 _ Zk+1 .

Hence: Iterate both y and z variables simultaneously

—F(y*, 25t
hpg(y*, 2"t

Lecture 6a: Advanced Computer Aided Modelling
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Implicit DAE solvers e
Now extend to DAE set by adding the algebraic system.
_ e

I—h)/g

oy

hy 2
y@z

—h]/

Ayk+1 _ yk+1 . yk

AZk+1 _ Zk+1 . Zk

OZ

\

Ayk+1_

AZ k+1

—F(y*,Z4t

hpg(y©, 2zt

Hence: Iterate both y and z variables simultaneously

Lecture 6a: Advanced Computer Aided Modelling
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Method 4: Exploiting structure

Basis: Z, =0q,(y)

We analyze the

algebraic equation set Z, =0,(2,,Y)
to try and obtain a

sequential calculation

of the algebraic Z. =(, (Zl,---, L. _1; Y)
variables.

then

y'=f(y,z1)

Lecture 6a: Advanced Computer Aided Modelling
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Partitioning and precedence order

Steps:

« Establish an output assignment for the
algebraic equations

« (Generate partition(s) and precedence order

How?

< Use the Incidence matrix
< Carry out a digraph analysis

Lecture 6a: Advanced Computer Aided Modelling
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Output assignment

Goal:

Assign to each equation an “output” variable
which is calculated knowing all other variables
In the equation.

Steps
<+ Generate an incidence matrix Jj;
< Permute rows of J to get a matrix B with
diagonal with non-zero elements
B=RJ

Lecture 6a: Advanced Computer Aided Modelling
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9=F-C JP-P Every row and very

9,=F-C, P —-P

g, =P.—P - pgh

Unknowns are P, F , F,

1
J =

N N = el

1

o r O O O

column can have only one
element with 1 and all
other elements must be O.
Only one R-matrix when
multiplied with the J-
matrix will give the lower-
tridiagonal B-matrix.
Check the following R-

matrix

Opr O
O O R
R O O

0 0 1Y1 1 O
—{1 0 01 0 1|=RJ R={
0 1 oA1 0 O

Lecture 6a: Advanced Computer Aided Modelling
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Digraph representation
< Let there be n nodes corresponding to each
equation
< |f the output variable of node 1 Is used in node |j,
draw a directed arc between i and j.
o 817

CV«/P P,
93_ P — pgh ‘

‘ Lecture 6a: Advanced Computer Aided Modelling
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Partitioning and precedence order

< Start at any node 1. L

< Trace outputs until: @ @ @
= no node with output ’
o delete node and add to a list
or

. - . gl
= a former node is revisited (loop 2.
made) o

o merge all loop nodes d,
o rearrange digraph and continue  J3 t0 g,, N0 output

< Stop when all nodes on list 3. 9, =R-C,JR-FK
= [ist contains partitions and 9,=F,-C, PP

—P,—P,—pgh
precedence order g, no output 9;=F—-FR-p9 g,

P
03

0, to g4, No output List

Hence: 3 partitions & precedence order IS g5, 0,, 0,

‘ Lecture 6a: Advanced Computer Aided Modelling
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Example: Numerical solution

« Solution of the DAE Involves:
D - g; =F, —F —p9z=0
o solveforP,usingg;  _ ¢ c /m—m —o
e solveforF,usingg, o.—-FR-c,JB—F =0
o solve for F  usingg, <%
+ evaluate right hand side of the ODE
+ advance the solution 1 step-length
« All this can be programmed into a simple
Matlab.m function file or in ICAS-MoT

P,=2;P,=3;P;=2;2(0)=0;A=1; pg =2

—(F,—F,)/A

‘ Lecture 6a: Advanced Computer Aided Modelling
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Modelling exercise 5a-1: Numerical solution

< Solve the reactor model (example 9.8 from
book of Fogler)

+ model equations will be supplied in class
< Solve mixer model (from exercise-1)
< Solve ice-cube model (from exercise 2)

« Solve generated models from exercise 3

¢ In each case check the eigen-values for
ODE/DAE systems

Lecture 6a: Advanced Computer Aided Modelling
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Modelling exercise 5a-2: Numerical solution

+ Solve the Williams-Otto plant simulation
and optimization problem

o Use the supplied MoT-file

¢ Solve the simulation problem and then the
optimization problem

Lecture 6a: Advanced Computer Aided Modelling
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