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Lecture 6a: Advanced Computer Aided Modelling

Overview

❖Types of problems encountered

❖Dealing with higher order equations

❖Types of numerical methods

❖Error and stability of solution

❖Key techniques for ODEs

▪ Runge-Kutta (single step methods)

▪ Linear multistep methods

❖ Solution of DAE systems



3
Lecture 6a: Advanced Computer Aided Modelling

Types of Problems

❖Ordinary differential equations (ODEs)

❖Differential-algebraic equations (DAEs)

❖Algebraic equations (AEs)
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Example Problems (exercise with MoT)
❖ Ordinary differential equations (ODEs)

❖ Differential - algebraic equations (DAEs)

❖ Algebraic equations (AEs) 
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Numerical methods - basics

❖ Method which produces discrete solutions for a 

continuous model

❖ Essentially involves solving sets of difference 

equations at each step

❖ Methods have limited accuracy

❖ Methods have different characteristics

▪ Order (accuracy)

▪ Form

▪ Stability



6
Lecture 6a: Advanced Computer Aided Modelling

Numerical solution – discrete character
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Higher-order equations

❖ Need to convert to 

first order system

❖ Done using simple 

transformation
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Example of transformation
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Categories of methods

ODE Solver

Categories

Based on step

arrangement

Based on equation

form

Single step Multi-step Explicit Implicit
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Single step methods

❖Single step methods

• Euler’s method   (1768)

• Runge-Kutta
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Multistep Methods

❖Linear multi-step methods

for k = 2 & 2 = 1
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Euler explicit: 0 = 0; 1 = 1; 2 = 1; 0 = 0; 1 = 1: 2 = 0

Euler implicit: 0 = 0; 1 = 1; 2 = 1; 0 = 0; 1 = 0: 2 = 1 
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Explicit - implicit methods

❖ Euler’s method (explicit)
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❖Backward Euler method (implicit)
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Characteristics of numerical methods
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Error and stability of solution

❖ Causes of error
•accuracy of the method

•size of step

•type of method (explicit, implicit)

•character of the problem

❖ Stability
•Control of error each step
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Local and global error
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True versus numerical solution

❖Use a simple problem
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How global error occurs

❖Global error
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yty  )(

❖In terms of key operators S(z), K(z)

)(

)()(    

)()()()()()()(    

)()()(

11

11

1111

11

















nnn

nn

nnnn

nnn

tTyK

tyKSK

tyAhKyAhKtyAhKtyAhS

yAhKtyAhS







K depends on the problem AND the method used

T depends on the method accuracy
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Controlling error
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❖Need to ensure 

❖Also control the truncation error
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Stability Regions for Numerical ODE Solvers

❖ Each method has a region where error propagation is stable 

(A-stability region)

❖ The region is where

❖ K depends on the steplength h, method and problem

▪ Euler method gives: K = (1+Ah)

▪ Backward Euler gives: K = 1/(1-Ah)

❖ The key factor of the problem is the eigen-values

❖ The region can be plotted on the complex plane

❖ The region can be defined by a simple test problem

1K
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Defining the A-stable region – Euler method

Test problem yy 
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1111 )()1(   nnnnn yhKyhyhyy gives

Im(h)

Re(h)
-2

| R(z) | < 1

K = (1+h)

1K



21
Lecture 6a: Advanced Computer Aided Modelling

A-stable region – Backward Euler method

Test problem yy 
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Euler method
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A-stable region – Backward Euler method

Test problem yy 
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Stability regions for Linear-Multistep methods
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Stability summary

❖ Every problem has an eigen-value spectrum

 Non-stiff problems have a narrow spectrum

 Stiff problems have a wide spectrum

❖ The largest eigen-value determines stability for a 

numerical method

❖ The largest step-length depends on the numerical method 

and the maximum eigen-value of the problem being solved

❖ Explicit methods always have limited stability regions

❖ Implicit methods can have very large stability regions
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Key numerical methods

❖ Solvers for AEs

❖ Euler’s method

▪ MATLAB code easy to 

write (or MoT)

▪ Terrible for stiff problems

▪ Low accuracy

❖ Runge-Kutta methods

▪ MATLAB codes ODE23, 

ODE45 (see MoT options)

▪ Good for non-stiff problems

▪ High accuracy

❖ Linear multi-step methods

▪ Adams methods for 

non-stiff problems

▪ Backward 

differentiation 

formulae (BDF) for 

stiff problems

▪ High accuracy

▪ Poor on highly 

oscillatory problems
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Solving differential-algebraic systems

❖Algebraic substitution

❖ Explicit ODE solvers

❖ Fully implicit solvers

❖ Structuring
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Method 1: Algebraic substitution

Substitute algebraic relations to get
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Method 2: Explicit ODE solver

❖ Know yn at tn

❖ Solve 0=g(yn,zn,tn) for zn

❖ Evaluate ODEs (using ODE45 etc.)

❖Advance step:  yn to yn+1

❖ Return to step 1 or terminate at tf
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Method 3: Implicit DAE solvers
Backward Euler and other implicit methods, solve:
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Implicit DAE solvers Part (2)

Now extend to DAE set by adding the algebraic system.
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Hence: Iterate both y and z variables simultaneously
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Implicit DAE solvers Part (3)

Now extend to DAE set by adding the algebraic system.
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Hence: Iterate both y and z variables simultaneously
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Method 4: Exploiting structure

Basis:

We analyze the 

algebraic equation set 

to try and obtain a 

sequential calculation 

of the algebraic 

variables.
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Partitioning and precedence order

Steps:

❖ Establish an output assignment for the 

algebraic equations

❖ Generate partition(s) and precedence order

How?

❖ Use the incidence matrix

❖ Carry out a digraph analysis
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Output assignment

Goal:

Assign to each equation an “output” variable 

which is calculated knowing all other variables 

in the equation.

Steps

❖ Generate an incidence matrix Jij

❖ Permute rows of J to get a matrix B with 

diagonal  with non-zero elements

B = R J
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Output assignment example
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Every row and very 

column can have only one 

element with 1 and all 

other elements must be 0. 

Only one R-matrix when 

multiplied with  the J-

matrix will give the lower-

tridiagonal B-matrix. 

Check the following R-

matrix
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Digraph representation

❖ Let there be n nodes corresponding to each 

equation

❖ If the output variable of node i is used in node j, 

draw a directed arc between i and j.
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Partitioning and precedence order

❖ Start at any node

❖ Trace outputs until:

▪ no node with output
o delete node and add to a list

or

▪ a former node is revisited (loop 

made)
o merge all loop nodes

o rearrange digraph and continue

❖ Stop when all nodes on list

▪ list contains partitions and 

precedence order

g3g2

1.

2.

g1
g3g2

List

g1

g3 to g1, no output

g3 to g2, no output

g1

g2

3.
g3

g3 no output g1

g2

g3
Hence:  3 partitions & precedence order is  g3, g2, g1
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Example: Numerical solution

❖ Solution of the DAE involves:

 solve for P2 using g3

 solve for F2 using g2

 solve for F1 using g1

 evaluate right hand side of the ODE

 advance the solution 1 step-length

❖ All this can be programmed into a simple 
Matlab.m function file or in ICAS-MoT
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1 2
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P0 = 2; P1 = 3; P3 = 2; z(0) = 0; A = 1; g = 2
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Modelling exercise 5a-1: Numerical solution

❖ Solve the reactor model (example 9.8 from 
book of Fogler) 

model equations will be supplied in class

❖ Solve mixer model (from exercise-1)

❖ Solve ice-cube model (from exercise 2)

❖ Solve generated models from exercise 3

 In each case check the eigen-values for 
ODE/DAE systems
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Modelling exercise 5a-2: Numerical solution

❖ Solve the Williams-Otto plant simulation 
and optimization problem

 Use the supplied MoT-file

 Solve the simulation problem and then the 
optimization problem


