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Introduction

People optimize. Investors seek to create portfolios that avoid excessive risk while achieving a
high rate of return. Manufacturers aim for maximum efficiency in the design and operation
of their production processes. Engineers adjust parameters to optimize the performance of
their designs.

Nature optimizes. Physical systems tend to a state of minimum energy. The molecules
in an isolated chemical system react with each other until the total potential energy of their
electrons is minimized. Rays of light follow paths that minimize their travel time.

J. Nocedal, S. J. Wright, Numerical Optimization, 2006
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Applications of Optimization in Chem E.

» Long-term planning and scheduling
— facility location and sizing
— transportation problems

* Process modeling
— fitting data to a model

— model selection for derivation of optimal operating
conditions

* Process design
— waste minimization
— heat exchanger/reactor network synthesis
— layout/piping
— solvent selection, equipment selection
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Goals and Challenges

« Goals:
— Maximize profits
— Minimize waste/environmental impact
— Minimize energy usage
— Minimize raw material usage

* Challenges:
— Uncertainty in model parameters
— Dynamic processes
— Large problem sizes
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Classification of Optimization
Problems

« Assuming we have a model for our system which
can be written mathematically, an optimization
problem can be formulated which looks like:

max/min f (X) Objective function
subjectto: g(X)<0 inequality constraints
h(X)=0 equality constraints

« The functions f,g,h can be either linear or nonlinear,
and the variables X can be either continuous or discrete
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Discrete Variables

We're used to dealing with continuous variables
(temperatures, flowrates), but many decisions In
chemical engineering are inherently discrete:

— How many batches of product x should be produced?
(integer)

— Should we build a tank farm in Malaysia or not?
(binary)

— How many reactors in parallel should be used for a
given application? (integer)

— Which product should our batch plant produce on
January 23'? (binary)
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Types of Optimization Problems

Based on these ideas, we categorize optimization
problems in the following manner:

— Unconstrained, linear or nonlinear, all continuous
(Use calculus to solve)

— Constrained, linear, all continuous: called a Linear
Program or LP

— Constrained, nonlinear, all continuous: called a
Nonlinear Program or NLP

— Constrained, linear, some integer/binary: called a
Mixed-Integer Linear Program (MILP or MIP)

— Constrained, nonlinear, some integer/binary: called a
Mixed-Integer Nonlinear Program or MINLP
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Feasible Regions

Let’s look at a 2-D linear program graphically:

X, <4
X, <6
617 l
max f (X) = x, + X, 5 + —
subjectto: X, -x,<4 X, 4+
X, <6 3 1 feasible «
X, <4 5 | region
X, X, 20 . — -
0 B —
0 12 3 4 5 6

X
1
Any solution which lies within the feasible region is called a feasible solution
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Feasible Regions, continued

* Note the feasible region can

also be called the simplex

» The optimal solution lies
at x;=4, x,=6

« At this point, the two
constraints

X, <6 X <4
are called active

e The other constraints are
Inactive (oversatisfied)

N
O R, NN W B~ O1 O
]

" feasible «
region

T

%l‘

X1

0 12 3 4 5 6
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Feasible Regions, continued

« How many feasible solutions

are there?

Infinitely many!

« We can handle this by
the realization that the
optimal solution for any
linear objective function
must lie at an extreme point

« Example: max x;-X,
Solution is at (4,0)

Xy

O P N W B~ O O

feasible <«
region
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Feasible Regions, continued

« Now, what happens if x, and

: X, <4
X, are forced to be integers? $ X, <6
6 ® ®
» The feasible region becomes 5 e o 9
a set of discrete points X, 4 ¢ o o o ¢
o If all the equations in the - S
Integer problem are linear 27 ° ° ° ¢
(MILP), we still have one 1¢ o o o o
solution, but it may not lie 0 ————
at an extreme point of the 0 12 3 4 5 6

simplex X4
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Feasible Regions, continued

Back to the LP, one final point:

max f (X) = X, +X, st e
subjectto: x,-x,<4 6 17 ) -
X, <6 5 / “«—
X, <4 X, 4t
X, X, 20 3 1 feasible «
region
Note we have 6 equations, 271, _
2 unknowns. How many 1T
optimal solutions are there? 0 1.t .
1 in this case, could be 0 0 12 3 4 5 6
X1

This means degrees of freedom analysis cannot be used directly here
Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani 12



Convex Functions

» Let's start by looking at one constraint of an NLP:
X, <—ax; +bx,  X,X, =0

 Rearrange to standard form:
g(x)=ax; —bx, +x,<0 *

X1
* g(Xx) Is a concave function, since a line drawn between any
two points on or below the curve stays on or below the curve
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Convex Functions, continued

e |f the function were g(x)=ax’ —bx, +x, +C <0

X1
glax; + (1 —a)xy) < ag(x;) + (1 — a)g(xy)
* g(x) Is now a convex function, since a line drawn between any
two points on or above the curve stays on or above the curve
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Convex Functions, continued

6

This feasible region to an LP
IS convex since a line drawn X, 4

between any two feasible 31

points remains completely
within the region.

% l

—>

feasible
region

o N
| |
1

T

O 12 3 4 5 6
X1
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A Nonconvex Region

If the feasible region looks like
e \/ o
X2

X1

then the constraint set forms a nonconvex region. The
problem is clear — even for a simple objective function
like f(x)=X, , we see one local and one global maximum

Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani 16



The Use of Convexity

Take the following optimization problem:

min  f(X)

st.  g(x)<0
 Regardless of problem type, if all the g(x) are convex,
then the feasible region will be a convex set.

« |If the objective function f(x) Is also convex, then
we have a convex programming problem

 This guarantees us that the problem has only one
minimum, the global one

 This also works for maxima — just multiply the
objective function and constraints bEX -1
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Example: Recovery of Waste
Heat from a Chemical Plant

* It is well-known that money can be saved by
using hot waste streams in heat exchangers
to heat up process fluids prior to disposal

* This brings up a number of questions:
— How many heat exchangers should we use?
— How large should each exchanger be?

— What type of a cycle should I use to recover the
heat?
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Heat Recovery Cycle

Let’s look at a simple one-exchanger recovery cycle

heat source at T,

l T

working
fluid at

Tc (hig.)
Recelver

@
Pumij

vapor at T,
S ity |
Turbine
Generator
condenser
l T coolant
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Heat Recovery Cycle, cont.

* If cooling water Is used as the condensing
fluid, then T, is known. T Is also fixed.

* Thus we really have a one-variable problem:

Find T, which minimizes costs (operating
and capital) but returns as much energy as
possible from the heat source.
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Problem Formulation

 How much work can we get out of the heat
source (ideally)?

_T _T _
I:)Turbine:Q : =

Tq

where P 1s the power, and Q Is the energy of the
heat source in BTU/hr

* However, we use energy to condense the
working fluid: T _T |
I:)Cond :Q TH TC
TH
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Problem Formulation, cont.

* So the total power output |s the difference of

these two:
AP=Q| & _ Te
_TH T |

« \What is the cost to operate the cycle?

s

Op.Cost =C c &
P 117 yQ_TH T, _
where C Is the pumping cost, n Is the efficiency

(normally 70%), and y Is the no. of hrs/year operating

e This Is minimized when T =T.. Is that possible? No!
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Problem Formulation, cont.

* \WWe need the capital cost of the exchanger:
C,Qr
U (Ts _TH )
where C, Is the cost/area, r Is the annualization factor,
and U is the heat transfer coefficient

Cap. Cost =

* Now, how do we formulate the problem?
Add the capital and operating cost equations,
and minimize
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Problem Solution
* The objective function becomes:

f(Ty)=CynyQ

CAQr

U(T -T,)

* For a low order function like this, solve

analytically: -

P'(T) =Cyn ¥Q| -

TC
T _

CAQr

UL -T.)Y

* That’s just a quadratic. How do we know

which solution 1s best?

 Usually, one is non-physical (T,,>Ty)
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Problem Solution, cont.

 The solution Is

T o_T [al—w/al az}
H — 'S

a, —,

o, =CnyT.U a, =C,r

* Note this Is the physical solution only,
and that the Q’s cancel out.

 There are lots of other examples of
unconstrained optimization in chemical
engineering — just remember to formulate
carefully
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Steepest Descent

* Goal: minimize f(x)
— unconstrained only

— must be differentiable over the
Interval of Interest
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Search Directions

* ldea: look for a series of points for
which f(x*) < f(x“)

 This will eventually find a local
minimum, or get stuck In a saddle point

e SO what direction do we have to move

In to get from x* to x**?
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Search Directions, cont.

* The key Is to show that any direction §
which satisfies
V' f(X)s<0

will lead to an improvement in X

 Note this Is vector-vector multiplication,
between the gradient of the function and the
search direction
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A 2-D Example

* Note vf(x*) Is the direction of the greatest
iIncrease in f : f(x)=6

(%) =3

f(X)=10"

Note the gradient
vector Is always
orthogonal to the °
contour
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Two Major Issues

e S0, based on local information, we see that
5§ =—Vf(x")

IS the search direction which will get us to
the minimum the fastest

- But how far should we go in the direction 5§
before recomputing vt (x***) and getting a
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Steepest Descent: algorithm

* We need a way to get from one point
to the next, called an iteration formula

* For Steepest Descent, we get
X=X+ AX =X+ 5"
=X —a “VF(X")
» oXisa scalar defining how far in the
search direction to move
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Steepest Descent: line searches

« How do we get ok ?

* The logical way Is to perform a one-D line
search

— find the minimum value of f along a line through
the current point in the search direction

—this finds the optimum in the fewest steps, but
IS time consuming

* In general, finding the optimal oX is not
needed
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Example: Steepest Descent

e [et’s use a function where the contours
are easy to visualize:

min f (X) =X’ +Xx;
o Start at the point (2,2)
xW =[2,2]-a “Vf (x*)

 So first find the gradient:
Vi (X)=[2x,,2%x,] so Vf(x°)=[44]
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Example: Steepest Descent

e So our search directionis gk — —

 Let’sjustset o =0.1

« Since all contours are concentric,

A
A

the search direction will not change

for any Iteration.
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Example: Steepest Descent

« What would happen if ¢ =0.57?
x® =[2,2]-0.5[4,4]=[0,0]

» We would reach the optimum In one step!

« To compute this, find the optimal «:
d

da

e Solvetosee ¢« =05
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Nonlinear Programming

 Abbreviated NLP

— nonlinear constraints and/or a nonlinear
objective function

— no integer/binary variables
* An important relaxation for solving MINLP’s

* What are the major challenges here?
— Locally optimal solutions may exist

— Solution found can therefore be initial guess-
dependent

— Solutions do not necessatrily lie at extreme
points
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Example: Lagrange Multipliers

* Let’s look at a different example:
min f(X)=x, +X,

s.t. X, +X: —1=0

* Note the only nonlinearity is in the
constraint — still an NLP
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The Lagrangian Function

* If we define the Lagrangian Function as:
L(X,1)=f(X)+Ah(X)

* We can then write
VL(X, 1) \X* = 0
which Is a necessary condition for optimality,
along with h(X) =0 for feasibility
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The Lagrangian Function: Example

» Let’s write this for our example:
min f(X)=X +X,

s.t. h(X) =%’ +x:-1=0

L(X,A)=f(X)+Ah(X) =X +X, + A (X +x5 1)

o Take first partials, and include the constraint:

1+24% =0 Three equations, three
1+24%x,=0  variables: solve for the
x?+x2-1=0 optimal X’s and A
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The Lagrangian Function: Example

* The solution (found numerically) Is

X, ==%0.707
X, =x0.707
A ==0.707

» The Lagrange Multiplier tells us how
sensitive the objective function Is to changes
In the constraint h, much like a marginal cost.
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Lagrange Multipliers for Inequalities

* For inequality constraints, Lagrange
multipliers are denoted by u

* Note that If we set u = 0 for Inactive
constraints, then we can put all of the
constraints into this format without
knowing which are active

* This Is a statement of complementary
slackness — If the constraint is not
satisfied exactly, the multiplier is zero
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Example: Inequality Constrained NLP

y

min f(x,y)=(x-2)"+(y-1)* °
s.t. g, (X, y)=-y+x*<0

g,(X, y)=y+x<2
g;(y)=y=0

—

 Note the optimum of the
constrained problem is [1,1]

// -y+x2=0

x+y-2=0

/ 2, D
Constraint set
M (1, 1) @

-Vf

y=2x-1, tangent to g,

O

» First two constraints are active,
third Is Inactive at [1,1]

1 2 X
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Logic of an Optimum Point

* Think of an optimum in the following way:

At any local optimum, no small feasible
change in the values of the variables will
Improve the value of the objective function

* This logic allows us to write conditions required

for a point to be locally optimal. Writing such
conditions converts a constrained NLP problem
Into a nonlinear equation solving problem
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Feasible Descent Directions

min  f(xy)=(x-22+(y-1)° ;
S.L. gl(X, y):—y+X2 <0 // y+x2=0
g,(X,y)=y+x<2

gs(y) =Yy=2 0 _ / @1
G

x+y-2=0

—

e Since none of the feasible
search directions are within AN

90° of — grad f, we must be
J NN

at an optimal point ; 1 —
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The KKT Conditions, Algebraically

* [f we convert this geometric logic to a
set of algebraic equations, we can solve
them to find our optimum point

* This idea was worked on independently
by Karush and Kuhn & Tucker In the

1960’s
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KKT Conditions — General Form
For the general NLP problem:

min f(X)
S.t. h.(X)=h.
g,(Xx)<c;

we can write the KKT conditions as
V L(X,A,0 )=0
u>0, ulfg;(X)-c;]=0
hi()_():bi ’ gj()_()gcj
* The solutions to these equations are all the
extreme points: minima, maxima, saddle points
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The Second-Order KKT Conditions

 For constrained optimization, we can classify
extreme points by looking at the second
derivatives of the Lagrangian at that point:

ViL  (an m x m matrix, the Hessian)

positive semi-definite | local minimum
negative semi-definite |local maximum

Indefinite saddle point
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Proving Convexity

« Evaluating those second-order KKT
conditions Is equivalent to testing the
convexity of the Lagrangian function

« A procedure to do this is as follows:

o Construct the Hessian matrix H(x)
o Compute Iits eigenvalues, check their signs
o Refer to the chart to judge convexity

Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani
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The Hesslan Matrix

* |t's just the matrix of second
partial derivatives:

- 8ff off ot
OX;  OX0X, OX.0X,
o° f o° f 0 f

OX,0%,  OX;  OX,0X,
o° f o° f 0 f
| OXi0X,  OX0X,  OXs
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Eigenvalues and Positive Definiteness

* Here's how we relate the signs of the
eigenvalues to convexity:

f(x) H(x) All Eigenvalues
strictly convex |positive definite | >0
convex nositive >0

semidefinite
neither Indefinite some >0, some <0
concave negative <0

semidefinite
strictly concave |negative definite |<0
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Example

min (%) =(x ~1)2 +x2
s.t. g,(X)=x—x; <0

X5

; 2.0+
* \WWhat does the feasible Lol \

egton fook Hke? ot

[ | i i | | | |
1 7 ) 1 1 1 1

051\05-1.0152025303540 X

« Where are the contours .10+

of the objective function? -15] / J

207
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Example, continued

min (%) =(x ~1)2 +x2
s.t. g,(X)=x—x: <0

X2 A

» Is the feasible region *’[

convex? o} _—"
05t T\
NO ) — .
. 051205101520 25303540 X;
15T /

20T

Somewhere between /

[1,1] and [0,0]
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Writing the KKT Conditions
min  f(X)=(x,-1)%+x
s.t. g,(X)=x—x: <0
* Now write the KKT conditions:
L=(x,—1)° + X5 +u(x, —x5)
V.L=[2(x, =1)+u, 2x, — 2ux, |

* SO We get:
2%, —2+u=0 x,(2-2u)=0
X —X: <0 u(x,—x)=0

u=>0
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Solving the KKT Conditions
2%, —2+u=0 Xx,(2-2u)=0
X —X:<0 u(x,—x2)=0

u=0 |
Can we solve this?
Yes, we have 3 equations, 3 variables.

Use the inequalities to check feasibility.
[0,0,2] feasible
[1,0,0] infeasible

[0.5,/0.5,1] feasible
[0.5,—/0.5,1] feasible

Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani
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Example, continued

min (X)) =(x -1)%+x’

S.L. g,(X) =X, — X22 <0
Xy 4
2.0+
« SO we have three L5l
extreme points. 1ot~

{ | i | | | | |
f 1 1 f f f

\0510152025303540 X

-0.57™
* Now we classify them  -1.0]

using second derivative o[
Information
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Second-order KKT Conditions
V.L=[2(x, —1)+u, 2x, — 2ux, |

Write the second order KKT conditions:
, 2 0
VL=
0 2-2u
We get: 2 0]
) At[0,0,2]: ViL =
_O _2_
. [2 0
At[0.5,£4/0.51]: V2L = -
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Finding the Eigenvalues

Now solve for the eigenvalues:

At[0,0,2]: det[A | —V§L]:(/1 —-2)(1 +2)=0
A =12 Indefinite

At[0.5+40.51]: det[1 1 -V2L]=(1 —-2)(1)=0
A =0,2 positive semi - definite, minimum
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Successive Quadratic Programming (SQP)

* For process flowsheet optimization, SQP has
been shown to be one of the most efficient
algorithms available, based on the number of
function evaluations required

 An overview: To solve min f(X)
subjectto: g(Xx)=0

At each iteration: h(x)=0

» Formulate a quadratic approximation for f(x)
 Linearize the constraints

 Solve this simplified QP to give a search direction
» Determine the step in the search direction

» Check for convergence
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SQP: Theoretical Basis

» Consider an NLP with only equality constraints
* The KKT conditions may be written

V,L=Vf(X)+> 2,Vh (X)=0 (i)
j
h(X)=0 (ii)
* One way to solve these 1s by Newton’s method.
If you write down the iteration formula for that,

you get VIL J | Ax] AL
770 Lz}{ ﬁ}

where J Is the Jacobian of the eq. constraints
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SQP: Theoretical Basis

 The solution of that linear system can be written
as an optimization problem (minimization of the
error). Those equations define an optimization

problem which Is quadratic. For a general NLP,
that problem looks like:

min F(s) = Vf (X)s' +% S'VAL(X,A4,0)§
subjectto: g,(X)+5'Vg;(X)=>0
h (X)+5'Vh,(X)=0

* This may look scary, but 1t’s a known problem which can
be solved quickly by modern optimization software.
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TABLE 9.1 Basic SQP Algorithm

0.
.
2,
3

Guess 1%, set B% = [ (the identity matrix is o defaull choice). Evaluate f{x0), gi+™, an-u:l Az, |
At evaluate Vi), Velr’), Vhix) If i > 0, caleulate 5 and ¥.
[f i > 0 and 5Ty = 0, update B using the BFGS formula (9.35).
Solve:  Min  VIaOTd + 12 7B ]

d , (Q?1)

sl gla)+ Vgl =0

{x') + Vi) = 0

[F el Il is less than o small tolerance or the Kuhn Tucker conditions (9.26) are within a smal]
tlerance, stop.

F1r'u_:| _n sepsize o so that < £ | and P + e o) < P{x'). Each trial slepsize requires
additional evaluation of fx), g, and Afx).

Setat =xeadi=i+ landgotol.
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Try to understand all the steps by going through this example

EXAMPLE 9.4 Performance of SQP

To illustrate the performance of SOP, we consider the solwion of the following small nonlinear
program:

Min x;
SLo=x; + 2P - (P =D 9.37)
—rg+ 2 (1=x P2 = (l-x,P 50

The feasible region for Eqg. (9.37) is shown in Figure 9.6a along with the countowrs of the objec-
tive function, From inspection we see that «* = [0.5, 0.375].

Starting from the origin (0 = [0, 0]7) and with B = /, we linearize the constraints and
solve the following quadratic program:

Min d + 1/2 (d)7 + d;7)
st dy 20 (9.38)
d] +1"I2 21

From the solution of Eq. {3.38) a search direction is obtainsd with & = [1, 007 with multipliers
iy =0and p; = 1. The contours of this guadratic function aleng with the linearized constraints in
Eq. (9.38) are shown in Figure 9.6b for the first SQP iteraticn. A line search along d determines
a stepsize of @ = 0.5 and the new point is x! = [0.5, 0]7, Mcie that this point lies outside of the
feasible region. Also, at this new point we see that from:
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SQP: Example
 Consider the following small NLP:
min X,
subject to: —x, +2(x, ) —(x, )’ <0
%, +2(1-%x ) -(1-x) <0

1.2

B T - T e B R O R, N T e

» The feasible region -

X

and optimal solution .-

are shown here:

0.2 7

—-

0_0 ¥ T ¥ T ¥ T T L T
0.0 0.2 0.4 X 0.6 0.8 1.0
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SQP: Example, cont.

o |If we start with an initial guess of (0,0), and
linearize the constraints (Taylor series), we get

the following initial QP to solve:

- 1 2 2
min s, + > {8 +5,

subjectto: s, >0
s, +5,=20
 Solving this QP gives a search direction of s=(1,0)
 If we do a 1-D line search to determine how far to

move In that direction, we find o.=0.5 and the new
point is x,=(0.5,0). Note the diagram on the next slide.
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SQP: Example, cont.

 Note the diagram showing this step:

T2
108 7

B « Now we repeat the
08 - procedure, but start
04 from the new point
(0.5,0)
0.0 \ ERENERI LY

0.0 0.2 04 x, 06 0.8 1.0 1.2
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SQP: Example, cont.

* The second QP subproblem is
min s, +%(sf +s§)

subjectto: -1.25s,—s,+0.375<0
1.25s,—5s,+0.375<0

 Solving this QP gives a search direction of
s=(0,0.375)

e |fwe doa l-D line search to determine how far
to move In that direction, we find a=1 and the
new point is x,=(0.5,0.375).
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SQP: Solution

« SQP finds the solution in two steps for this
NLP problem.

1.2

1.0 7

0.8 7

0]

0.6 T

0.2 7

0_0 T 7 T T bl T \ ) ¢ Y T T

0.0 0.2 0.4 X 0.6 0.8 1.0 1.2

e One can also check the second-order conditions

to ensure that this point is a local minimum
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