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Introduction

22Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani

J. Nocedal, S. J. Wright, Numerical Optimization, 2006



Applications of Optimization in Chem E.
• Long-term planning and scheduling

– facility location and sizing

– transportation problems

• Process modeling
– fitting data to a model

– model selection for derivation of optimal operating 
conditions

• Process design
– waste minimization

– heat exchanger/reactor network synthesis

– layout/piping

– solvent selection, equipment selection
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Goals and Challenges

• Goals:

– Maximize profits

– Minimize waste/environmental impact

– Minimize energy usage

– Minimize raw material usage

• Challenges:

– Uncertainty in model parameters

– Dynamic processes

– Large problem sizes
44
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Classification of Optimization 
Problems

• Assuming we have a model for our system which 

can be written mathematically, an optimization 

problem can be formulated which looks like:

sconstraintequality      0)(                    

sconstraint inequality     0)(   :subject to

function Objective   )( max/min





xh

xg

xf

• The functions              can be either linear or nonlinear,

and the variables      can be either continuous or discrete

hgf ,,

x
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Discrete Variables

We’re used to dealing with continuous variables
(temperatures, flowrates), but many decisions in
chemical engineering are inherently discrete:

– How many batches of product x should be produced? 

(integer)

– Should we build a tank farm in Malaysia or not? 

(binary)

– How many reactors in parallel should be used for a 

given application? (integer)

– Which product should our batch plant produce on 

January 23rd?  (binary)
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Types of Optimization Problems

Based on these ideas, we categorize optimization
problems in the following manner:

– Unconstrained, linear or nonlinear, all continuous  

(Use calculus to solve)

– Constrained, linear, all continuous: called a Linear 

Program or LP

– Constrained, nonlinear, all continuous: called a 

Nonlinear Program or NLP

– Constrained, linear, some integer/binary: called a 

Mixed-Integer Linear Program (MILP or MIP)

– Constrained, nonlinear, some integer/binary: called a 

Mixed-Integer Nonlinear Program or MINLP
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Feasible Regions
Let’s look at a 2-D linear program graphically:
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Any solution which lies within the feasible region is called a feasible solution

88Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani



Feasible Regions, continued

• Note the feasible region can 

also be called the simplex

• The optimal solution lies

at x1=4, x2=6
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• At this point, the two

constraints 

are called active

62 x 41 x

• The other constraints are

inactive (oversatisfied)
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Feasible Regions, continued

• How many feasible solutions

are there?

Infinitely many!

• We can handle this by

the realization that the

optimal solution for any

linear objective function

must lie at an extreme point

• Example: max x1-x2

Solution is at (4,0)
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Feasible Regions, continued

• Now, what happens if x1 and

x2 are forced to be integers?

• The feasible region becomes

a set of discrete points

• If all the equations in the

integer problem are linear

(MILP), we still have one

solution, but it may not lie

at an extreme point of the

simplex
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Back to the LP, one final point:
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Note we have 6 equations,

2 unknowns.  How many

optimal solutions are there?

1 in this case, could be 0

This means degrees of freedom analysis cannot be used directly here
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Convex Functions
• Let’s start by looking at one constraint of an NLP:

• Rearrange to standard form:

0,        211

2

12  xxbxaxx

0)( 21

2

1  xbxaxxg

• g(x) is a concave function, since a line drawn between any 

two points on or below the curve stays on or below the curve

x2

x1
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Convex Functions, continued

• If the function were 0)( 21

2

1  Cxbxaxxg

• g(x) is now a convex function, since a line drawn between any 

two points on or above the curve stays on or above the curve

x2

x1
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This feasible region to an LP

is convex since a line drawn

between any two feasible

points remains completely

within the region.
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Convex Functions, continued



A Nonconvex Region
If the feasible region looks like

then the constraint set forms a nonconvex region. The 

problem is clear – even for a simple objective function

like f(x)=x2 , we see one local and one global maximum 

x2

x1
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The Use of Convexity 

Take the following optimization problem:

0)(        s.t.

)(      min

xg

xf

• If the objective function f(x) is also convex, then 

we have a convex programming problem

• This guarantees us that the problem has only one 

minimum, the global one

• This also works for maxima – just multiply the 

objective function and constraints by -1

• Regardless of problem type, if all the          are  convex, 
then the feasible region will be a convex set.

)( xg
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Example: Recovery of Waste 
Heat from a Chemical Plant

• It is well-known that money can be saved by 
using hot waste streams in heat exchangers 
to heat up process fluids prior to disposal

• This brings up a number of questions:

– How many heat exchangers should we use?

– How large should each exchanger be?

– What type of a cycle should I use to recover the 
heat?
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Heat Recovery Cycle

Let’s look at a simple one-exchanger recovery cycle

heat source at Ts

vapor at TH

Turbine

Generator

coolant

condenser

Receiver

Pump

working

fluid at

TC (liq.)
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• If cooling water is used as the condensing 
fluid, then TC is known. TS is also fixed. 

• Thus we really have a one-variable problem:

Find TH which minimizes costs (operating 
and capital) but returns as much energy as 
possible from the heat source.

2020Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani

Heat Recovery Cycle, cont.



Problem Formulation

• How much work can we get out of the heat 

source (ideally)?








 


S

CS

T

TT
QPTurbine

where P is the power, and Q is the energy of the

heat source in BTU/hr

• However, we use energy to condense the 

working fluid:







 


H

CH

T

TT
QPCond
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Problem Formulation, cont.

• So the total power output is the difference of 

these two:










S

C

H

C

T

T

T

T
QP

• What is the cost to operate the cycle?











S

C

H

C
H

T

T

T

T
yQC  Cost Op. 

where CH is the pumping cost,  is the efficiency

(normally 70%), and y is the no. of hrs/year operating

• This is minimized when TH=TS.  Is that possible? No!
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Problem Formulation, cont.

• We need the capital cost of the exchanger:

)(
Cost Cap.

HS

A

TTU

QrC




• Now, how do we formulate the problem?

Add the capital and operating cost equations, 

and minimize

where CA is the cost/area, r is the annualization factor,

and U is the heat transfer coefficient

2323Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani



Problem Solution

• The objective function becomes:

• For a low order function like this, solve 

analytically:

)(
 )(
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• That’s just a quadratic. How do we know 

which solution is best?

• Usually, one is non-physical  (TH>TS)
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Problem Solution, cont.

• The solution is

• Note this is the physical solution only,

and that the Q’s cancel out.

• There are lots of other examples of

unconstrained optimization in chemical

engineering – just remember to formulate

carefully

rCUyTC
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Steepest Descent

• Goal: minimize )(xf

– unconstrained only

– must be differentiable over the 
interval of interest
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Search Directions

• Idea:  look for a series of points for 
which )()( 1 kk xfxf 

• This will eventually find a local 
minimum, or get stuck in a saddle point

• So what direction do we have to move 
in to get from ?     to 1kk xx
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Search Directions, cont.

• The key is to show that any direction     
which satisfies

will lead to an improvement in 

s

0)(  sxfT

x

• Note this is vector-vector multiplication, 
between the gradient of the function and the 
search direction
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A 2-D Example

• Note              is the direction of the greatest 

increase in f :
)( kxf

Note the gradient

vector is always

orthogonal to the

contour

x1

2x

3)( xf

6)( xf
10)( xf

kx

ks

)( kxf

)( kxf

90 

2929Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani



Two Major Issues

• So, based on local information, we see that 

is the search direction which will get us to 
the minimum the fastest

• But how far should we go in the direction 
before recomputing and getting a 
new

ks
)( 1 kxf

? 1ks

)( kk xfs 
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Steepest Descent: algorithm

• We need a way to get from one point 
to the next, called an iteration formula

• For Steepest Descent, we get

)(                           

 1

kkk

kkkkkk

xfx

sxxxx









• k is a scalar defining how far in the 
search direction to move
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Steepest Descent: line searches

• How do we get k ?

• The logical way is to perform a one-D line 
search
– find the minimum value of f along a line through 

the current point in the search direction

– this finds the optimum in the fewest steps, but 
is time consuming

• In general, finding the optimal k is not 
needed
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Example: Steepest Descent

• Let’s use a function where the contours 

are easy to visualize:
2

2

2

1)(min xxxf 

• Start at the point (2,2)
    )( 2,21 kk xfx  

• So first find the gradient:

    4,4)(  so    2,2)( 0

21  xfxxxf
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Example: Steepest Descent

• So our search direction is 

• Let’s just set 1.0 

• Since all contours are concentric, 

the search direction will not change 

for any iteration.











4

4
ks
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Example: Steepest Descent

• We would reach the optimum in one step! 

• What would happen if               ?5.0 

       0,04,40.52,21 x

• To compute this, find the optimal :

  0) (  kkk sxf
d

d




• Solve to see 5.0 
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Nonlinear Programming
• Abbreviated NLP

– nonlinear constraints and/or a nonlinear 
objective function

– no integer/binary variables

• An important relaxation for solving MINLP’s

• What are the major challenges here?

– Locally optimal solutions may exist

– Solution found can therefore be initial guess-
dependent

– Solutions do not necessarily lie at extreme 
points
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Example: Lagrange Multipliers

• Let’s look at a different example:

01         s.t.

)(       min

2

2

2

1

21





xx

xxxf

• Note the only nonlinearity is in the 

constraint – still an NLP
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The Lagrangian Function

• If we define the Lagrangian Function as:

• We can then write 

)( )() ,( xhxfxL  

0|) ,( **  ,





x
xL

which is a necessary condition for optimality, 

along with 0)( xh for feasibility
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The Lagrangian Function: Example

• Let’s write this for our example:

)( )() ,( xhxfxL  

• Take first partials, and include the constraint:

01)(         s.t.

)(       min

2

2

2

1

21





xxxh

xxxf
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2
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1

2

1







xx

x

x



 Three equations, three 

variables: solve for the 

optimal x’s and 

)1( 2

2

2

121  xxxx 
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The Lagrangian Function: Example

• The solution (found numerically) is

707.0  

707.0

707.0

2

1









x

x

41

• The Lagrange Multiplier tells us how 
sensitive the objective function is to changes 
in the constraint h, much like a marginal cost.

41Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani



Lagrange Multipliers for Inequalities

• For inequality constraints, Lagrange 
multipliers are denoted by u

• Note that if we set u = 0 for inactive 
constraints, then we can put all of the 
constraints into this format without 
knowing which are active

• This is a statement of complementary 
slackness – if the constraint is not 
satisfied exactly, the multiplier is zero
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• Note the optimum of the 

constrained problem is [1,1]

• First two constraints are active, 

third is inactive at [1,1]

0)(             

2),(             

0),(         s.t.

)1()2(),(       min

3

2

2

1

22









yyg

xyyxg

xyyxg

yxyxf

Example: Inequality Constrained NLP
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Logic of an Optimum Point

• Think of an optimum in the following way:

At any local optimum, no small feasible 

change in the values of the variables will 

improve the value of the objective function

• This logic allows us to write conditions required
for a point to be locally optimal. Writing such
conditions converts a constrained NLP problem
into a nonlinear equation solving problem
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Feasible Descent Directions

• Since none of the feasible

search directions are within

90 of – grad f, we must be

at an optimal point
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The KKT Conditions, Algebraically

• If we convert this geometric logic to a

set of algebraic equations, we can solve

them to find our optimum point

• This idea was worked on independently

by Karush and Kuhn & Tucker in the

1960’s
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KKT Conditions – General Form

• For the general NLP problem:

we can write the KKT conditions as

jj

ii

cxg

bxh

xf





)(             

)(         s.t.

)(       min

0])([    , 0

0) ,,(

*

***





jjj

x

cxguu

uxL 

jjii cxgbxh  )(    , )(

• The solutions to these equations are all the 

extreme points: minima, maxima, saddle points
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The Second-Order KKT Conditions

• For constrained optimization, we can classify 
extreme points by looking at the second 
derivatives of the Lagrangian at that point:

Lx

2 (an m x m matrix, the Hessian)

positive semi-definite local minimum

negative semi-definite local maximum

indefinite saddle point
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Proving Convexity 

• Evaluating those second-order KKT
conditions is equivalent to testing the
convexity of the Lagrangian function

• A procedure to do this is as follows:
oConstruct the Hessian matrix H(x)

oCompute its eigenvalues, check their signs

oRefer to the chart to judge convexity
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The Hessian Matrix
• It’s just the matrix of second 

partial derivatives:

















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



































2

3

2

23

2

13

2
32

2

2

2

2
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2
31

2

21

2

2

1

2
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x

f
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f
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f
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f

x

f
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f
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f
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f

x

f

xH
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Eigenvalues and Positive Definiteness 

• Here’s how we relate the signs of the 

eigenvalues to convexity: 

f(x) H(x) All Eigenvalues

strictly convex positive definite >0

convex positive 

semidefinite

neither indefinite some 0, some 0

concave negative 

semidefinite

0

strictly concave negative definite <0

0
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Example

• What does the feasible 

region look like?

0)(         s.t.

)1()(       min

2

211

2

2

2

1





xxxg

xxxf

• Where are the contours 

of the objective function?
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-0.5 2.00.5 1.0 1.5 2.5 3.0 3.5 4.0 x1

x2
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Example, continued

• Is the feasible region 

convex?

0)(         s.t.

)1()(       min

2

211

2

2

2

1





xxxg

xxxf

No

• Where are the minima?

Somewhere between 

[1,1] and [0,0]
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Writing the KKT Conditions

• Now write the KKT conditions:

0)(         s.t.

)1()(       min

2

211

2

2

2

1





xxxg

xxxf

)()1( 2

21

2

2

2

1 xxuxxL 

 221 22 , )1(2 uxxuxLx 

• So we get:

0

0)(       0

0)22(    022

2

21

2

21

21







u

xxuxx

uxux
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0

0)(       0

0)22(    022

2

21

2

21

21







u

xxuxx

uxux

Solving the KKT Conditions

Can we solve this?
Yes, we have 3 equations, 3 variables.  

Use the inequalities to check feasibility. 

Solutions are:

feasible  ]1,5.0,5.0[

feasible  ]1,5.0,5.0[

infeasible  ]0,0,1[

feasible  ]2,0,0[

],,[ 21



uxx
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Example, continued

• So we have three 

extreme points.

0)(         s.t.

)1()(       min

2

211

2

2

2

1





xxxg

xxxf

2.0

1.5

1.0

0.5

-2.0

-1.5

-1.0

-0.5 2.00.5 1.0 1.5 2.5 3.0 3.5 4.0 x1

x2

• Now we classify them 

using second derivative 

information
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Second-order KKT Conditions

Write the second order KKT conditions:

 221 22 , )1(2 uxxuxLx 

We get:













u
Lx

220

02
2























00

02
  :]1,5.0,5.0[At 

 
20

02
  :]2,0,0[At 

2

2

L

L

x

x
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Finding the Eigenvalues

Now solve for the eigenvalues:

indefinite   2  

0)2  )(2  (] [det   :]2,0,0[At 2







 LI x

minimum definite,-semi positive   2,0  

0) )(2  (] [det   :]1,5.0,5.0[At 2







 LI x
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Successive Quadratic Programming (SQP)

• For process flowsheet optimization, SQP has 

been shown to be one of the most efficient 

algorithms available, based on the number of 

function evaluations required

• An overview:  To solve

59

0)(                    

     0)(   :subject to

   )(min 





xh

xg

xf

At each iteration:

• Formulate a quadratic approximation for f(x)

• Linearize the constraints

• Solve this simplified QP to give a search direction

• Determine the step in the search direction

• Check for convergence
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SQP: Theoretical Basis

• Consider an NLP with only equality constraints

• The KKT conditions may be written

60

(ii)    0)( 

(i)     0)( )(



 

xh

xhxfL
j

jjx 

• One way to solve these is by Newton’s method.  

If you write down the iteration formula for that, 

you get

sconstraint eq.  theof Jacobian  theis  where

0

2

J

h

Lx

J

JL x

T

x
































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SQP: Theoretical Basis

• The solution of that linear system can be written 

as an optimization problem (minimization of the 

error). Those equations define an optimization 

problem which is quadratic. For a general NLP, 

that problem looks like:

61

0)()(                    

       0)()(   :subject to

 ),,(  
2

1
)()(min 2







xhsxh

xgsxg

suxLssxfsF

j

T

i

j

T

j

x

TT 

• This may look scary, but it’s a known problem which can 

be solved quickly by modern optimization software.
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63

Try to understand all the steps by going through this example
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SQP: Example

• Consider the following small NLP:

64

   

    0112                    

    02   :subject to

min 

3

1

2

12

3

1

2

12

2





xxx

xxx

x

• The feasible region 

and optimal solution 

are shown here:
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SQP: Example, cont.

• If we start with an initial guess of (0,0), and 

linearize the constraints (Taylor series), we get 

the following initial QP to solve:

65

 

 0                    

    0   :subject to

2

1
min 

21

2

2

2

2

12







ss

s

sss

• Solving this QP gives a search direction of s=(1,0)

• If we do a 1-D line search to determine how far to 

move in that direction, we find =0.5 and the new 

point is x1=(0.5,0).  Note the diagram on the next slide.
65Course: Process Design Principles & Methods, L8, PSE for SPEED, Rafiqul Gani



• Note the diagram showing this step:

66

• Now we repeat the 

procedure, but start 

from the new point 

(0.5,0)
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• The second QP subproblem is

67

 

 0375.01.25                    

    0375.01.25-   :subject to

2

1
min 

21

21

2

2

2

12







ss

ss

sss

• Solving this QP gives a search direction of 

s=(0,0.375)

• If we do a 1-D line search to determine how far 

to move in that direction, we find =1 and the 

new point is x1=(0.5,0.375).
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SQP: Solution

• SQP finds the solution in two steps for this 

NLP problem.

68

• One can also check the second-order conditions 

to ensure that this point is a local minimum
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