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Lecture 5b: Advanced Computer Aided Modelling

Overview: Topics to be covered

❖Model analysis

LTI

Stability analysis

❖Model reduction

❖Model simplification
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Model analysis: Problem statement

❖Clear statement of inputs, outputs and goal.

 algorithmic problem statement used:

• GIVEN input data, model, …

• FIND/COMPUTE outputs, 

characteristics, …

• USING a chosen method or procedure 

❖Classes of problems

 Decision problem (Yes/No)

 Search problem (compute)
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The Process System

❖ Inputs, u

❖Outputs, y

❖ States, x

❖Disturbances, d

Su y

x

d

❖ y = S[u,d]

❖ SISO, MIMO

❖ SS or dynamic

❖ lumped or distributed

d

u

y
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Experimental Design for Parameter Estimation

Static models

❖number of measurements

❖ test point spacing

❖ test point sequencing

Dynamic models ( …in addition)

❖ sampling time selection

❖Excitation level (frequency content)

Data acquisition & analysis
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Input-Output Models

❖Contains only input and output variables 

and their derivatives

❖ For an LTI* system we may use:

- linear differential equations. (higher order)

- impulse response function

- transfer function (frequency domain)

* LTI: Linear Time Invariant
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Example of step test of model
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right



8

Lecture 5b: Advanced Computer Aided Modelling

Linear System Models

Advantages:

❖Superposition concept applies

❖Wealth of powerful mathematical tools

❖ Initial conditions zero when written in terms 

of deviation variables

❖Simpler to analyze and solve



9

Lecture 5b: Advanced Computer Aided Modelling

LTI State-Space Models

)()()()(
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tFdtDutCxty

tEdtButAxtx




•

A = nxn state matrix

B = nxr input matrix

C = mxn output matrix

D = mxr input-to-output coupling matrix

E = nxv disturbance input matrix

F = mxv disturbance output matrix

with constant matrices

(A,B,C,D,E,F) is a realization (which is not unique)

Linear model



10

Lecture 5b: Advanced Computer Aided Modelling

Multivariable Linearization
1. Original model:
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Linearized Nonlinear State Space Models

General nonlinear model:

Linearized model:
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Note: The structure of the 

model is defined by the 

structure of matrices   

([A],[B],[C],[D])
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Stability of systems - overview

❖Two stability notions

- bounded input bounded output (BIBO)

- asymptotic stability

❖Testing asymptotic stability of LTI systems

❖MATLAB functions (e.g. eig(A))

❖ Stability of nonlinear process systems

- Lyapunov’s principle
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BIBO Stability

A system is said to be “bounded input, bounded 

output (BIBO) stable” if it responds with a 

bounded output signal to any bounded input 

signal, i.e.

BIBO stability is external stability

 norm. signal a is  ||.|| where

||||     ||||
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 S

Measured  

(controlled 

or process) 

variable

Actuator  

(manipulated 

or  design) 

variable
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Asymptotic Stability

A system is said to be “asymptotically stable” if for 

a “small” deviation in the initial state the resulting 

“perturbed” solution goes to the original solution in 

the limit, i.e. 

asymptotic stability is internal stability

 norm. vector a is  ||.|| where
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Asymptotic Stability of LTI Systems

A LTI system with state space realization 

matrices (A,B,C)  is asymptotically stable if 

and only if all the eigen-values of the state 

matrix A have negative real parts, i.e.  

asymptotic stability is a system property

iR   allfor   0    }e{ Ai, 
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Example
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Analysis

i

i

Aeig

A

 49.9124    3.5924-             

 49.9124    3.5924-             

)(

0];  50.0415  ;0415.50  1847.7[







Stable!



17
Lecture 5b: Advanced Computer Aided Modelling

Model (Simplification and) Reduction

LTI models with state space representation

States can be classified into: 

❖ slow modes (“small” negative eigenvalues) 

states essentially constant

❖ fast modes (“large” negative eigenvalues)

go to steady state rapidly

❖ medium modes

xyux
dt

dx
CBA      ,   
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Constitutive 

model

Process & model 

Optimizer

Objective 

function

x, y (from process)

x, y (from model)

, u
Model parameters

Or process design 

variables

Modeling issues -3 

Lecture 5b: Advanced Computer Aided Modelling

Identification & use of models

 (optimization variables for parameter estimation – data driven modeling); u
(design variables for process optimization)



19

Modeling issues - 4 

Lecture 5b: Advanced Computer Aided Modelling

Constitutive 

or local model

Process & model 

Optimizer

Objective 

function

x, y (from process)

x, y (from model)

, u
Model parameters

Or process design 

variables

Local model used only for (in inner loop to reduce time)  

∆y = J-1F In 1980s by Macchietto; Hertzberg; Gani 

Local models
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Model Simplification

Reactor Separation
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Note: For a fixed value of Da close to 1, a 

small disturbance in F1 produces a large 

change in F2
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Model Reduction

Reduce the number of equatons  representing 

the model by: 
• by neglecting some effects

• by reducing the number of discretization points

• by lumping of variables and equations

Side effects:

Equation set may become more sensitive;



22
Lecture 5b: Advanced Computer Aided Modelling

Stability analysis

• Multiple steady states

• Unstable state

Model reduction: Example
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Model Reduction – 2 (example) 

Lecture 5b: Advanced Computer Aided Modelling

xi ji
L= yi ji

V i = 1,….NC 

Si xi = Si yi = Si zi = 1

Z zi = V yi + L xi   i = 1,….NC 

Feed, Z

Vapor, V

Liquid, L

T, P

The constitutive model provides the 

fugacity coefficients and derivatives 
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Model Reduction – 2 (SRK EOS) 

Lecture 5b: Advanced Computer Aided Modelling

P = RT/(V-b) - a/[(V + e b)(V + sb)] , or, 

Z = V/(V-b) - (a V)/[RT(V +e b)(V + sb)]

a & b are parameters that need to be defined through 
mixing rules eg., 

a = S i S j xi xj aij;  b = S i  xi bi ; mi = m(w)

aij = (aii ajj)
1/2(1 - kij)   ; bi = yB RTci /Pci

aii = yA (R2 Tci
2 /Pci)[1 + mi (1 - Tri)

1/2]2

yA, yB, m(w ), e, & s also need to be defined (these 
values are different for different EOS)

ln ji (fugacity coefficient) is computed from T, P & x

or,  independent of x in terms of a and b parameters
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Model Reduction – 3 (reduction method) 

Lecture 5b: Advanced Computer Aided Modelling

* Verify if constitutive variables can be estimated 

independent of compositions using the operators

a =  xi i ; b =  xi i ; ……..

• multiply balance equations with the pure component 

parameters i ; 

• sum for all components; 

• replace summation term with operator a. Repeat for all 

operators

* Using only the operators a & b, NS(NC+2) equations is 

replaced by NS(2+2) equations independent of the number 

of components in the system (NS = number of stages; NC = 

number of compounds)

Gani & O’Connell (2001)
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Model Reduction – 4 (new reduced model) 

Lecture 5b: Advanced Computer Aided Modelling

xi ji
L= yi ji

V i = 1,….NC 

Si xi = Si yi = Si zi = 1

Z zi = V yi + L xi   i = 1,….NC 

Feed, Z

Vapor, V

Liquid, L

T, P

aZ -  ay - (1-) ax = 0    (1)

bZ -  by - (1-) bx = 0    (2)

 (Ki -1)zi / (1 +  (Ki - 1)) = 0   (3)

Known: az, z, T, P, , b

Solve Eqs 1-3 for 

ax, bx & 

NC+1 equatons 

reduced to 2+1 

equations (not 

counting energy 

balance)


