Chemical Product Centric Sustainable Process Design

Tutorial Document

By

Rafiqul Gani

June 2010

Department of Chemical & Biochemical Engineering Technical University of Denmark, DK-2800 Lyngby, Denmark <u>www.capec.kt.dtu.dk</u>

Integrated Chemical Product Design – Tutorial document

CONTENTS

Chapter	Title	Page
1.0	Computer Aided Molecular Design	1
1.1	CAMD problem formulation	1
1.2	Methods of solution	2
1.3	Issue & Needs	6
2.0	Introduction to ProCamd	12
2.1	Overview of ProCamd features	12
3.0	Tutorials with ProCamd	20
3.1	Solvent search for vapour –liquid separation	20
	Acetone-chloroform separation	20
	Azeotropic mixture	40
3.2	Solvent search for liquid-liquid separation	42
3.3	Solvent-based solid separation (solvent substitution)	46
3.4	Design of backbones & termination of backbones	53
	Generate backbone with Propred and terminate with	53
	ProCamd	
	Generate backbone with ProCamd and terminate with	57
	ProPred	
3.5	Design of large molecules	61
Appendix A	CAPEC Database manager	63
Appendix B	SLE Calculations & ICAS utility	69
Appendix C	Additional exercises	77
Appendix D	Decomposition based strategy for CAMD	82
Appendix E	Target property selection for solvent-based separation	85

1. Computer Aided Molecular Design

The objective of this section of the tutorial document is to present to the reader, a brief description of computer aided molecular design in terms of problem definition, methods of solution, and the issues and needs with respect to CAMD problem formulation and solution.

1.1 CAMD PROBLEM DEFINITION

Computer aided molecular design (CAMD) problems are defined as

Given a set of building blocks and a specified set of target properties; Determine the molecule or molecular structure that matches these properties.

In this respect, it is the reverse problem of property prediction where given the identity of the molecule and/or the molecular structure, a set of target properties is calculated. CAMD maybe performed at various levels of size and complexity of molecular structure representation. Most CAMD methods and tools used in PSE/CAPE applications, work at the macroscopic level where the molecular structure is represented by groups (Harper *et al.* 1999) and/or connectivity indices (Camarada and Maranas 1999). An evolutionary based CAMD method for design of fuel additives has been proposed by Sundaram *et al.* (2001). Figure 1 (from Harper *et al.* 1999) illustrates a typical group contribution based CAMD method, where the pre-design phase defines the *basic needs*, the design phase determines the feasible candidates (generates molecules and tests for desired properties) and the post-design phase performs higher level analysis of the molecular structure and the final selection of the product. CAMD methods based on macroscopic properties are suitable for design of relatively smaller molecules either as chemical products or as additives (or ingredients) for formulated products

For design of more complex and relatively larger molecules such as drugs, pesticides and specialty chemicals, molecular modelling based CAMD methods have been reported (Livingstone, 1995). Structure-based drug design has emerged as a valuable tool in medicinal chemistry where the integration of structure-based methods, virtual screening, and combinatorial chemistry is necessary. As the chemical product design involves molecules of larger size, distinction among isomers and or different molecular structures for the same chemical compound type become more important. Consequently, the molecular structural representation becomes more complex using smaller and smaller scales while the property prediction becomes more specialized.

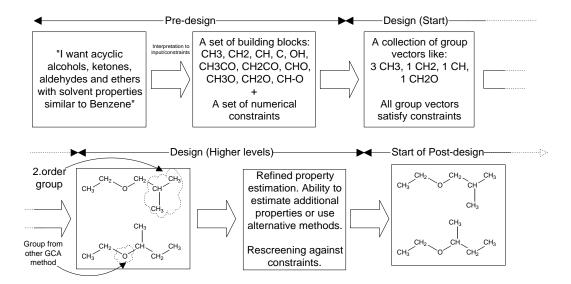


Figure 1: Basic steps of CAMD

1.2 METHODS OF SOLUTION

The main steps of any CAMD method are to generate chemically feasible molecular structures, to estimate the target properties for the generated structures and to screen/select those that satisfy the specified property constraints. Methods employing the generate & test approach (see Fig. 2) perform these steps sequentially, methods employing mathematical programming perform the steps simultaneously while hybrid methods decompose the problem into sub-problems and allow the use of different

solution approaches to the different sub-problems. In the text below, a few representative CAMD methods are discussed.

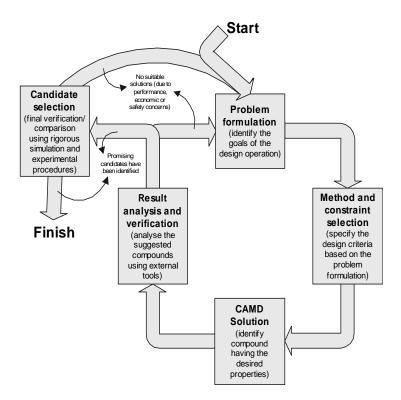


Figure 2: Multi-level hybrid CAMD method of solution

Cabezas *et al.* (2000) developed a database approach with interactive search for the appropriate solvent where the main tools needed are properties databases, target property estimation systems and a knowledge-based system for guiding the user through the solvent selection and screening steps. Note that because it is based on a search of the database, it therefore does not need to generate molecular structures. Harper and Gani (2000) proposed a multi-step, multi-level hybrid CAMD method that combines group contribution approach at a lower level and a molecular modelling approach at a higher level (see Fig. 3). At the lower levels, however, group contributions include first-order as well as second-order groups that are able to represent the molecular structural differences of some isomers.

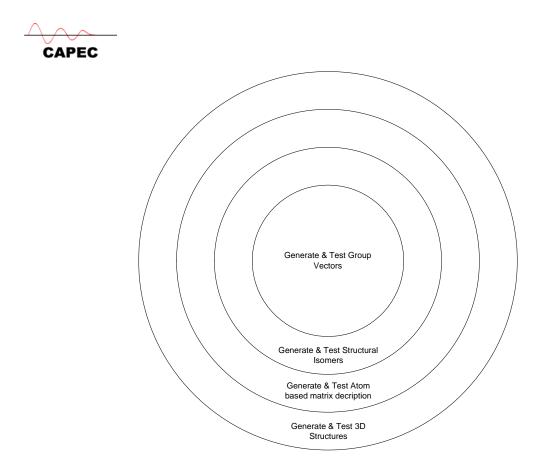


Figure 3: Multi-step and multi-level hybrid CAMD method

Venkatasubramanian *et al.* (1995) proposed the use of genetic algorithms with groups as the building blocks for polymer design. Camarada and Maranas (1999) and Duvedi and Achenie (1996) proposed the use of optimisation techniques to determine the optimal molecule with Camarada and Maranas employing connectivity indices while Duvedi and Achenie employing groups, respectively, for molecular structure representations. The problems solved with these methods all refer to small (solvent) molecules, although, repeat units of polymers, refrigerants and process fluids have also been designed through these methods.

QSAR based CAMD methods have been developed for design of large molecules. Sippl *et al.* (2001) recently described the construction, validation and application of a structurebased 3D QSAR model of novel acetylcholinesterase inhibitors. A generate and test approach was employed, where the target was a desired inhibitor activity (a macroscopic property) but the molecular structure that provides the desired target is obtained through study of binding conformation of protein-inhibitor complexes. Methods employing

optimization techniques related to complex molecule design have also been reported, for example, by Moore *et al.* (2000), who developed a predictive model for DNA recombination for the generation of novel enzymes. Klepeis and Floudas (2000) employed a combination of molecular dynamics and advanced mathematical techniques to protein structure prediction. Other examples of combination of higher-level modeling and molecular design can be found in the papers published in the Journal of Computer Aided Molecular Design.

1.2.1 Hybrid CAMD Method of Solution

The solution of all CAMD problems could be divided into the following four main steps.

Step 1: Problem Formulation – here, the CAMD problem is defined in terms of target properties (both the identity of the property as well as their target values).

Step 2: Initial Search - generate initial list of candidates through a search of a database (if available, for example, CAPEC database). This provides a good idea of which types of molecules one should be looking for. Note that the search should be made only with respect to the pure component target properties as a search with respect to mixture properties may not be possible.

Step 3: Generate and Test - use any CAMD technique (and software, for example, ProCAMD) to automatically generate and test candidates. The selected CAMD technique should be able to generate molecular structures and evaluate their properties with respect to the specified target properties.

Step 4: Verification – here, the selected candidates are further analyzed in terms of their performance when they are applied for their designed use. Models capable of simulating their performance in their process of application are needed. These models may be process simulation models (for example, ICASSIM or ICAS-utility) as well as product application models (such as delivery of an active ingredient).

1.3 ISSUES & NEEDS

Problem Definition: Identifying the needs of the chemical product through a set of target properties is a very important first step for all CAMD methods. Hostrup et al. (1999) include this as a pre-design step and propose the use of a knowledge-based system to guide the user in identifying the target properties as well as selecting the corresponding property values. Their examples, however, cover only solvent selection/design problems. Therefore, there is a need to develop knowledge based systems that may guide the chemical product designer to not only identify the target properties but also to specify their target (goal) values for a large range of chemical product design problems. The selection of target properties should also be closely linked with what can be estimated (and therefore, computed) and what must be measured? The knowledge-based system can help to reduce the number of experiments or to focus on a few specialized measurements from which a number of other target properties may be estimated. For example, if the solvent molecule type for a complex (large multifunctional molecule) solute can be identified, then experiments to measure solubility can be concentrated on some representatives of the identified molecular type to generate not only the unavailable property model parameters but also to identify the desired solvent. Note that because of the complex molecular structure of the solute, it is unlikely that the needed property model parameters would be available at the start of the problem solution.

1.3.1 CAMD Methods & Tools

Assuming that the target properties have been identified and their goal values have been specified, the main issues with all types of CAMD methods are the following:

- How to generate molecular structures?
- How to represent the molecular structure?
- What level of molecular structural information will be used?
- How the target properties will be obtained (calculated and/or measured)?

The complexity of the problem may be understood from the numbers of isomers that can be generated as a function of carbon number. As the carbon numbers for each molecular type increase, so does the number of possible isomers. So, to address the questions above, one needs to consider very carefully, the molecular structural parameters that would be used to represent the molecules. These same parameters will also need to be used for estimating the target properties. It can be noted that most group contribution based methods design small molecules and therefore, do not need to handle too many isomers. However, unless the groups are able to distinguish between isomeric structures, these methods would not be able to consider them. Also, since in this case, many different types of molecules are investigated, the number of candidates may still be quite large. The design of large complex molecules, on the other hand, mainly depends on differences in molecular structures of isomers or of molecular conformations of a particular molecular type. Therefore, in this case, molecular structures are represented at the mesoscopic and/or microscopic level and property estimation methods that use these variables are needed. In this case also, the number of candidates is very large because there may be too many isomers.

The corresponding needs for a CAMD method are the following:

- A tool for molecular structure representation at different scales.
- A tool for molecular structure generation (based on a set of rules that will ensure the generation of feasible chemical structures).
- Tools for analyzing molecular structural stability.
- Tools for target property estimation.
 - A tool for property estimation method selection (including identifying which properties can be estimated for which database and/or experimental techniques need to be used).
 - A library of property estimation models (methods and tools) that are particularly suitable for computer aided applications.

• A method of solution for the CAMD problem (the two inner steps of the design process).

Since it appears that multiple property models at different scales or levels of molecular structural variables will need to be considered if the isomers and/or multiple conformations are also going to be considered, a communication (link) between lower level modelling tools and higher levelling model tools also need to be established. Harper and Gani (2000) established such a link for their hybrid CAMD method. The idea is to first establish the molecular type in the search/design through macroscopic properties and then to link the promising candidates to higher-level mesoscopic or microscopic methods for more detailed analysis. One starts with a molecular description at the group level, which is then converted to a 2-dimensional atomic representation at the atomic level. This is then passed to molecular modelling software that converts the atomic representation to a 3-dimensional model, which is then optimized to obtain the final 3-dimensional structure. Once the optimized structure has been obtained, a whole range of *descriptors* and properties may be estimated.

1.3.2 Property Models

The application range of the property model is directly related to the application range of the CAMD method since every property model has its limits of application range. Selecting the property model, therefore, implicitly defines the search space and therefore, there is a need to develop property models that can be used reliably outside its boundary of application range (at least for some additional region).

Target properties usually include pure component as well as mixture properties and the selection of the property estimation model(s) raises other issues & needs, for example, uncertainties in property estimations, availability of model parameters and size of the search space. Maranas (1997) has incorporated the uncertainty of property estimation methods within the CAMD problem definition. Another difficulty is associated with unavailable model parameters. If model parameters are not available for a generated

molecule and a corresponding property, that generated molecule can no longer be considered as one of the candidates since its properties cannot be estimated. This may eliminate a potentially optimal molecule. The need therefore is to develop property estimation models with fewer parameters but having larger application ranges. In principle, property models suitable for CAMD methods need to be predictive. Therefore, further development of CAMD methods for applications in structured products and formulations is closely related to the availability and usability of the needed property models.

For design of complex molecules where a higher level of molecular structural information need to be considered in order to search among isomers, the CAMD methods usually employ problem specific models based on property-molecular structural relationships. Because the molecular structure plays an important role in the estimation of properties related to the design of these large molecules, QSAR based methods have become quite popular for these types of design problems. Properties estimated through parameters obtained from dynamic modelling and/or molecular modelling is necessary when microscopic and/or mesoscopic scales have been employed for molecular structural representations. The need is to develop special quantitative property models based on the data generated from dynamic and/or molecular modelling plus any available experimental data. The property estimation task could be arranged on a hierarchy based on the computational effort and cost related to obtaining a property value. Obviously, the experimental measurement of the property should be at one (high) end and simple, firstorder group contribution methods could be at the other (low) end. The largest number of compounds of different types is handled at the lower end and as one proceeds upwards, the number of compounds of different types decrease but the number of isomers that can be handled increase. In this way, the computationally intensive calculations are saved only for those candidates that have satisfied all other constraints based on the lower level property models. An example of such a hierarchy is given through the listed properties in Table 1. Note that even in this approach, the uncertainties of prediction accuracy may eliminate some candidates. On the other hand, the method would systematically move towards the solution, provide useful insights and keep the computational load at a

manageable level. Note that if pure component and mixture properties were needed in a CAMD problem, the pure component properties would be estimated first. This would reduce the computational load significantly for the estimation of mixture properties. Also, this may make the mixture property model more acceptable since some molecules that could not otherwise be handled would be removed due to a specified property constraint and not because of unavailable model parameters.

Hierarchy	Property type	Property	Calculation
1	Primary	Critical temperature	Additive methods
		Critical pressure	(group contribution,
		Critical volume	atomic contribution,
		Normal boiling point	connectivity index,
		Normal melting point	etc.); QSAR;
		Heat of vaporization at 298 K	molecular modelling
		Heat of fusion at 298 K	_
		Dipole moment	_
		Gibbs energy of formation at 298 K	_
		Solubility parameter	_
		Log P	_
		Log W _s	
2	Secondary	Surface tension	f (Sol Par)
		Refractive index	f (Sol Par)
		Acentric factor	$f(T_c, P_c, T_b)$
		H_v at T_b	$f(T_c, P_c, T_b)$
		Entropy of formation at 298 K	$f(H_f, G_f)$
3	Functional	Vapour pressure	$f(T_c, P_c, \omega, T)$
		Density (liquid)	$f(T_c, P_c, T_b, \omega, T)$
		Diffusion coefficient	$f(V_m, T_b, T)$
		Thermal conductivity	$f(T_c, M_w, T_b, T)$
		Solubility parameter	$f(V_m, H_v, T)$
4	Mixture	Activity coefficient	$f(T, \underline{x}); f(T, P, \underline{x})$

Table 1: List of properties arranged in a hierarchical order.

Fugacity coefficient	f (T, P, <u>x</u>)
Density (liquid)	f (T, P, <u>x</u>)
Saturation temperature	f (P, V, T)
Saturation pressure	f (P, V, T)
Solubility (liquid)	f (<u>γ</u> , <u>x</u> , T, P)
Solubility (solid)	f (<u>γ</u> , <u>x</u> , T, P)

Typical pure component (macroscopic) properties are boiling points, melting points, heat of vaporization, partition coefficients, viscosity, surface tension, thermal conductivity, solubility parameter and many more. Typical properties from molecular modelling or quantum mechanics are bond energies, interaction energies, binding energies, *etc*. When working with large complex molecules, the structural changes in the molecular structure (for example, in isomers) need to be observed in a defined activity or property. Therefore, special QSAR based models are developed and used in design of special purpose molecules (as in Sippl *et al.* (2001)).

In the area of mixture properties, solubilities of solids, liquids and gases in solvents is a very common target property, mixture viscosities and diffusivity are also quite common for CAMD problems dealing with solvents. Properties related to different combinations of phase equilibrium involving vapour, liquid and solid are quite common. If the solute molecules are not large and complex, macroscopic properties from group-contribution methods are usually sufficient, provided the necessary group parameters are available. For large, complex molecules and or higher-level property modelling, special models based on quantitative structure relationships may need to be developed.

NOTE: See also the manuals for **ICAS**, **ProPred**, **ICAS-MoT** (available under "CAPEC\ICAS\docs" on the drive where ICAS has been installed)

2. Introduction to ProCamd

2.1 Overview of the ProCamd features

The user-interface of ProCamd consists of a specifications section and a results section. The user defines a CAMD problem by filling out only the necessary details of the following six problem specification pages.

In the text below, each of the six sections are explained.

2.1.1 General Problem Control

1. Preselect molecule types

Azeotrope/Miscibility Calculations Biodegradation Calculations
Temperature depd. props. Mixture Properties
General Problem Control Non temperature depd. props.
Problem Title:
Generate:
Acyclic Compounds
C Aromatic Compounds Autoslack in initial generation:
C Cyclic Compounds
Preselection
Generate Compounds containing sulphur
Selected Groups: CH3 CH2 CH C OH CH3CO CH2CO CH0 CH3CO0 CH2CO0 HCO0 CO0 HCO0 CO0 Edit Groups

- Select the molecule type (acyclic, cyclic or aromatic).
- Select "isomer" generation option, if necessary
- Select the specific molecule type (preselection of molecule types automatically selects the groups to be used as building blocks)

2. Backbone generation

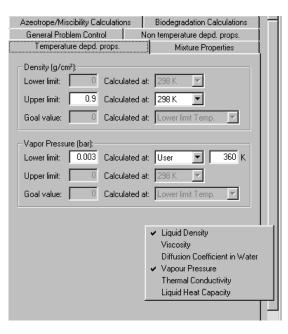
BackBone			
BackBone Generation			
Min. Free:	0		
Max. Free:	0		

- 3a. Select user-specified compounds
- 3b. Select the size of molecules
- 3c. Database search option

3d. Screening of properties from ProPred

User specified compounds:				
	Delete			
	Define			
	Commom Solv.			
Extended Problem Control				
Minimum number of groups:	2 🛨			
Maximum number of groups:	8 🗧			
Minimum number of "functional" groups:	0			
Maximum number of "functional" groups:	6			
Minimum number of same "functional" group:	0 -			
Maximum number of same "functional" group:	6			
Perform Database search after generation Calculate properties with ProPred engine, after initial screeening				
Calculate properties with ProPred engine, after initial screeening				

- Select "backbone generation" option if incomplete structures are to be generated.
- Give the maximum and minimum number of free connections
- User-specified compounds can be given by defining the molecules in terms of groups or from a table of preselected solvents (click on "common solv")
- Select the minimum and maximum compound sizes through the number of groups allowed
- ProCamd will search the DIPPR database if "perform database search..." option is selected
- ProCamd will estimate properties with ProPred for the generated molecules if "calculate properties …" option is chosen



2.1.2 Non-Temperature Dependent Properties

General Problem Control	Non temperature depd. props.
Normal Boiling Poir Min Open Cup Flash Pi ✔ Max LogP (Octanol/WεGoal	Min: Max. Goal: 450 0 320 0 1.5 0 0
	Molecular Weight Critical Temperature Critical Pressure
	Critical Volume Acentric Factor: ✓ Normal Boiling Point Normal Melting Point
	Gibbs Energy of Formation Enthalpy of Formation Enthalpy of Vaporisation Liquid Molar Vol. (298K) Liq. Molar Vol. (150il)
	Closed Cup Flash Point Copen Cup Flash Point Hansen P-solub, param, Hansen D-solub, param, Hansen H-solub, param, Total Solubility Parameter
	Surface Tension Log(Water Solubility) Octanol Solubility ✓ LogP (Octanol/Water) Refractive Index
	Molecular Refractivity Dipole Momentum Henry's Law constant

Right click on the left-hand side to obtain the list of properties. Left click on the property to select it and then fill out the data. In order to establish the limits the property can take, click <u>on</u> the property and uncheck the corresponding bounds.

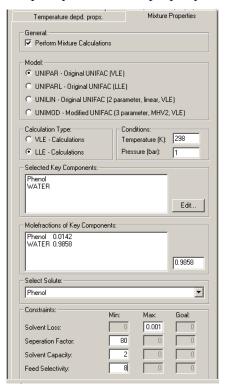
2.1.3 Temperature Dependent Properties

Right click on the left-hand side to obtain the list of properties. Left click on the property to select it and then fill out the data.

1. Select UNIFAC model

Temperature depd. props. Mixture Properties	Select Components	
ieneral: ✓ Perform Mixture Calculations	Selected Compounds	
Aodel	Hame	Database
LLE - Calculations Pressure (bar): O	User specified Remove User Specified	Select from database

In the "Mixture Properties" tab check the "Perform Mixture Calculations" box. Click on "Edit..." in the "Selected Key Components" cage; in the displayed window click on "Select from database", the "Component Selector" window will appear: select your compounds. Click "Ok".


2. Select compounds and specify the Enter the mole fractions. Click on the mixture compositions

Temperature depd. props.	Mixture Properties			
- General:				
Perform Mixture Calculations				
Model:				
 UNIPAR - Original UNIFAC (V 	'LE)			
C UNIPARL - Original UNIFAC (UNIPARL - Original UNIFAC (LLE)			
C UNILIN - Original UNIFAC (2 parameter, linear, VLE)				
UNIMOD - Modified UNIFAC (3 parameter, MHV2, VLE)				
Calculation Type:	Conditions:			
C VLE - Calculations	Temperature (K): 298			
ELE - Calculations	Pressure (bar): 1			
Selected Key Components:				
Phenol WATER				
WATEN				
	Edit			
Molefractions of Key Components:				
Phenol 0.0142 WATER 0.9858				
	0.9858			

Enter the mole fractions. Click on the component (in the "Molefractions" cage) then type in the box the desired value and press "Enter".

3. Specify the mixture property constraints

Right click on the left-hand side to obtain the list of constraints (solvent properties). Left click on "Constraints" to select it and then fill out the data.

2.1.5 Azeotrope/Miscibility Calculations.

General Problem Control	Non temperature depd. props.
Temperature depd. props. eotrope/Miscibility Calculation	Mixture Properties
eotrope/Miscipility Laiculation	ns Biodegradation Calculations
ieneral:	
Perform Azeotrope calculat	tions
Perform Miscibility calculati	ons
Perform SLE calculations	
T ENDINI SEE CAICUIAUDIIS	
zeotrope Specifications:	
Phenol	
WATER	C Don't calculate
	C No azeotrope
	C Form azeotrope
liscibilty Specifications:	
Perform calculations in an i	interval
Final mixture should be	- Mixture specifications:
Final mixture should be:	Mixture specifications:
C Totally Miscible	Mass ratio of generated
	Mass ratio of generated compound should be 1.4
 Totally Miscible Party/Totally Miscible 	Mass ratio of generated
 C Totally Miscible C Partly/Totally Miscible C Partly Miscible C Non Miscible 	Mass ratio of generated compound should be 1.4
C Totally Miscible C Party/Totally Miscible C Party/Miscible C Non Miscible C Does not matter	Mass ratio of generated compound should be 1.4 with respect to:
Totally Miscible Partly/Totally Miscible Partly/Totally Miscible Partly Miscible Non Miscible Does not matter Interval specifications	Mass ratio of generated compound should be 1.4 with respect to: Phenol
C Totally Miscible C Party/Totally Miscible C Party/Miscible C Non Miscible C Does not matter	Mass ratio of generated compound should be 1.4 with respect to:

- Select "perform azeotrope …" if ProCamd should also look for binary azeotrope formation (or not formation). Highlight the compound and then select one of the 3 available options.
- If liquid miscibility is to be checked, select this option and then choose from the 2 available options check miscibility for a fixed solvent amount (1.4 times the solute mass) or at different intervals of temperature and composition. At least 2 intervals must be chosen. Note that totally miscible or immiscible solutions may be difficult to find.

2.1.6 Biodegradation Calculations

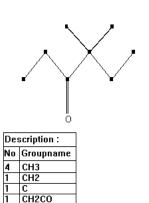
The options on this page are currently not recommended. A new version with more reliable models will be implemented in the near future. The current version has methods of small application range.

2.1.7 Starting a Calculation & Viewing of Results

Click on $\stackrel{\text{def}}{=}$ to start the calculations. On completion, the following screen is shown.

Summary :
Number of compounds designed : 6779 Number of compounds selected : 30 Number of isomers designed : 279 Number of isomer selected : 58 Total time used to design : 3.88 s
The group : CDD was not used for design because of missing data for : Acentric factor
"Screened Out" Statistics for Primary Calculations : Octanol/Water partition coef. : 5155 of 6779 ▼
Use Toolbar to Navigate through the List of Candidate Molecular Structures IK: First Structure C Previous Next Last Structure
Sort: Sort List of Candidate Structures Info: Show this dialog box
DataBank: Press it to visualize database records of compounds matching the current candidate structure.
Short: Create text file with candidate structures
NOTE: "DataBank" button appears ONLY if the option "Perform Database Search" is checked. If no compound in the database matchs the current candidate, the button is disabled (dimmed).
NOTE: User compounds (if specified) matching the design requirements are generated as candidate structures and placed at the end of the list.
Close

This summary of results provides information on how many compounds were generated and why some of them were rejected. Analysis of these results helps to reformulate the CAMD problem.


Compound 1 :

The generated (feasible) compounds will be

The user-specified (feasible) compounds

will be listed at the end

listed first by ProCamd

Properties :			
Property	Value	2. Value	Unit
Octanol/Water partition coef.	2.12	2.12	
Flash Temperature (open cup)	321.65	321.65	ĸ
Normal Boiling point	441.26	441.26	ĸ
Vapour Pressure at 360.00 K	0.101	0.101	bar
Liquid density at 298.15 K	0.814	0.814	g/cm*
Select. based on feed Comp.	9.48	9.48	
Capacity	24.49	24.49	
Separation factor	86.60	86.60	
Solvent loss	2.50E-004	2.50E-004	
NO AZEOTROP w. keycomp. no 1			
IS NOT miscible with feed.			

CH3 CH3 CH3 Description : No Groupname 4 ACH

Compound 62 (User spec.):

Properties :			
Property	Value	2. Value	Unit
Octanol/Water partition coef.	3.19	3.19	
Flash Temperature (open cup)	322.68	322.68	К
Normal Boiling point	415.88	415.88	К
Vapour Pressure at 360.00 K	0.170	0.170	bar
Liquid density at 298.15 K	0.866	0.866	g/cm*
Select. based on feed Comp.	46.39	46.39	
Capacity	2.72	2.72	
Separation factor	389.00	389.00	
Solvent loss	1.77E-005	1.77E-005	
NO AZEOTROP w. keycomp. no 1			
7			
IS NOT miscible with feed.			

Explanation of the lower menu-bar items

\mathbf{K}	$\langle \rangle \rangle$	Sort	Info	ProPred	Databank	Short

- Click OK and then use the ">>" or "<<" buttons to move up or down to see the various feasible candidate solvents.
- "sort" option orders the feasible compounds in the user-specified order.
- "info" option shows the "summary" page again
- "ProPred" option indicates that the current compound can be represented by ProPred and that it can be launched directly from ProCamd
- "Databank" option indicates that the current compound has been found in the DIPPR database and its stored data can be retrieved and viewed.
- "Short" option puts all the results on the screen into a text file.

18

2.1.8 Other Options

Under "file" in the top menu-bar, the following options are now available.

New	Ctrl+N
Open	Ctrl+0
Save	Ctrl+S
Save As	
Save ProPred BackBone Problem	
Load ProPred BackBone Problem	
Print	Ctrl+P
Print Preview	
Print Setup	
1 WaterPhenol.cam	
2 camd-test-backbone.CAM	
3 ibuprofen-back.CAM	
4 backbone-2.CAM	
Run	
Exit	

Files from ProCamd can be saved and reused. Note that "backbone" problems need to be saved and loaded differently from complete molecular structure problems.

Backbone files generated by ProPred need to be loaded before they can be terminated.

3 Tutorials with ProCamd

- 3.1 Solvent search for vapour-liquid separation
- 3.1.1 Acetone-chloroform example

Problem Description

A mixture of acetone and chloroform is to be separated into pure products. To solve this problem with ICAS, follow the steps given below.

- First the mixture is to be analysed, in order to identify the azeotrope formed by acetone and chloroform.
- It is decided to use extractive distillation for the separation. Use CAMD (Computer Aided Molecular Design) to identify a good solvent. We know from beforehand that benzene is a solvent for this separation. Therefore compare the performance of the designed solvent with that of benzene. Use ProCamd to identify new solvents.
- > Use of ICAS- PDS (Process Design Studio) to design distillation columns.
- > Make a simulation in ICAS of the extractive-distillation flowsheet.

Mixture Analysis

Compound Selection

Draw a stream and then select compounds by clicking on the "compounds" button.

LCAS 6.0 - [Acet LCAS 6.0 - [Acet	on_Chloroform.ICS] Draw Format Def.Prob. Toolboxes Simulation Window Help			
			e 🧐 🥙 너 Siii opt	
	» ∎∎ <mark>≈ *</mark> *	P2 PA 📸 🔒 🧉	AS	
11	Mixture Specification - D:\Mauricio\Work\ICAS_ma	nuals\Manuals\WorkShop`	Acetone-Chloroform	ExampleI 🔀
	Temperature Pressur	Energy Type	Select existing compo	nents OK
	Stream Number 1 © Specify Value © Spe Error Connection Currenting	cify Value C Enthalpy C Entrony	ACETONE CHLOBOEOBM	Cancel
	C Dew point C Dev	r Factors Explicit variables	У	Default
		r Factors Parameters		
	Temperature (K)	Value 870	Known Init	Plot
	Enthalpy Flow (K)	0		
	Pressure (atm) Density (kmole/m^3)	1	×	
	ACETONE (kmole/hr)	10	×	
	CHLOROFORM (kmole/hr)	10	×	
	TOTAL FLOW (kmole/hr)	0		
	If the total flow is specified the other will be normalized to moleful	actions. 📃 View Ca	Iculated Results	
	Ready			

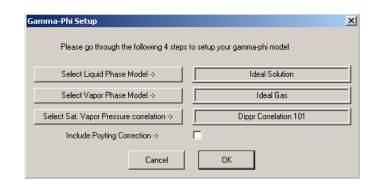
Stream Specification

- 1. Double click on the stream to enter the "mixture specification" window
 - Specify the equimolar mixture
 - Temp. = 370 K
 - Pressure = 1atm.

``	Constant in the second se	Energy Type C Enthalpy C Enthopy C Entropy C Internal Energy	Select existing of ACETONE CHLOROFORM		OK Cancel Default
	To Connection Suroundings Use Boundaries Divider Factors 1				
		Value	Known	Init P	Not
	Temperature (K)	370	×		
	Enthalpy Flow (K)	0			
	Pressure (elm)	1	×		_
	Density (kmole/m [*] 3)				
	ACETONE (kmole/hv) CHLOROFORM (kmole/hv)	100	×		_
	TOTAL FLOW (knole/ty)	0	~		
	If the total flow is specified the other will be normalized to molehactions. Ready	View Calcu	lated Results		
	Protect				
	point				
	proved				
	<u>Looped</u>				

After specifying the temperature, pressure and component flows (as shown above) click on the top-left button it to enter the "property" window. Click on the top-left button is go to the "property model" selection window.

🖕 Property - D:\Mauricio\Work	\ICAS_manuals\Manuals\Wo	rkShop\Acetone-Chloro	form\ExampleICAS\ 💶 🗙
Stream Number 1	Select components to include in t ACETONE CHLOROFORM	the calculations:	Properties to calculate PT-Flash PH-Flash H = 0
	What to plot: VLE-PhaseDiagram	Plot Type:	PS-Flash S = 0 Bubble Point Temperature Dew Point Temperature
Incorporate remaining	x-axis ACETONE y-axis	•	Bubble Point Pressure Dew Point Pressure Fugacity
components as fixed components Show precipitation lines	ACETONE_Vapour 3-axis	•	Activity Coefficient Fugacity Check Intensive Properties
Known Pressure	, Multiple Curves Only One Curve		Solubility Products
	Multiple mixture points - independ No Component	•	PH-values Reactive Bubble Point Temp.
Note: Perform the property	Multiple mixture points - depende No Component	nt component	 Reactive Dew Point Temp. Separation efficiency curves
calculation by pressing Run on the toolbar	Temperature (K)	First Last Step	Solubility Calculation
Reset All Reset Axis Back Cancel	Pressure (atm) - Independent Comp. (kmole)	1 0 0 0 10 1 0 100 10	Organic SLE Organic LLE Pure compound correlations
Thermodynamic model specification	maepenaeni comp. (Kinole)	10 1:00 110	


Thermodynamic Model Selection

1. Click on the "gamma-phi" option for this example

🖕 Selection of Thermodynamic Model - D:\CAPEC\ICAS\wo	rk\ICA51.in
	Jse multi-phase flash (more than 2 phases)
Phase Equilibrium Model	
Gamma-Phi Select the gamma-phi approach (Differ	rent thermodynamic models for each phase)
Phi-Phi Select the phi-phi approach (Same the	rmodynamic model for all phases)
Selected GE-Model No Ge-model selected	
, Selected EDS-Model Soave-Redlich-Kwong	
Selected EUS-Model Jobaven rediict Reviolitig	
Saturated Vapor Pressure Correlation	Heat of vaporization model
Select Dippr Correlation 101	DIPPR-106 correlation (DIPPR-106)
Enthalpy model	Density/Volume model
DIPPR-107 IdGas correlation (Hig) DIPPR-107 IdGas correlation + Hr from EOS (Hig+Hr) DIPPR-100/114 IdLig correlation (Hid)	IdGas correlation + DIPPR-105 IdLiq correlation (IdGas+IdLiq) Density from EOS for both vapour and liquid (EOS)
Ready	

2. Click on the "select liquid phase model"

 Select the UNIFAC model as shown below. The UNIFAC model parameters are shown and if all parameters are available (as in this example), click OK ("Ideal Gas" is fine for this problem), click OK

iE Menu		×						
Select GE-model : Model Parameters Aij [K] 3. *ACH*	Org. UNIFAC VLE 1 par Tedel Solution Margules Redich-Kister Scathard Hamer Van Laar Van Laar Det Switch Det Switch Det Switch Org. NFTL	OK Relax OK Cancel	G	E Menu Select GE-model :	Org. UNIFAC VLE 1	Dat	T	ОК
8. 'ACOH'	Urg, NH L Mod, NRTL Mod, NRTL Regular Solution Org, UNIRAC VLE Tpar Org, UNIRAC VLE Tpar Org, UNIRAC VLE Tpar Org, UNIRAC VLE Tpar Org, UNIRAC VLE Tpar	-		Model Parameters	Pure Properties	Compound Desc		Cancel
	Gas UNIFAC (gas solubility)			Aij [K]	1. 'CH2'			
	UNIFAC 2 par (new group table) User UNIFAC model			1. 'CH2'	0	476.3999	24.9	
				9. 'CH2CO'	26.76	0	-354.6001	
]				23. 'CCI3'	36.7	552.1001	0	
he selected databas	View UNIFAC parameter table	Save Parameters to Database						

4. On return to the main property model selection window click on default to select all the other model options (as shown below) and click OK.

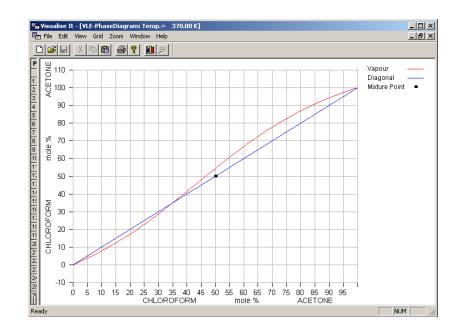
Selection of Thermodynamic Model - D:	CAPEC\ICAS\work\ICAS1.in
	Default
	Use multi-phase flash (more than 2 phases)
Gamma-Phi Select the gamma	-phi approach (Different thermodynamic models for each phase)
	approach [Same thermodynamic model for all phases]
Selected GE-Model Org. UNIFAC VLE	: 1par
Selected EDS-Model Ideal Gas	
Saturated Vapor Pressure Correlation	Heat of vaporization model
Select Dippr Correlation 101	DIPPR-106 correlation (DIPPR-106) DIPPR-106 correlation (DIPPR-106)
Enthalpy model	Densitv/Volume model
DIPPR-100/114 IdLig correlation (Hid)	IdGas correlation + DIPPR-105 IdLig correlation (IdGas+Ic

5. In order to come to the mixture analysis click 🐱 in the stream specification window. This brings up the following dialog:

`	mponents to include in the calc	ulations	
Start calculations	The plot should be V	/LE-diagram, and the plot	type is retangular
Property - D:\CAPEC\ICAS\wor	k\ICAS1.in		
SGG1202?			
Stream Number 1	Select components to include in the ACETONE CHLORCFORM	e calculations:	Properties to calculate ☐ PT-Flash ☐ PH-Flash H = 0
Specify what should be on the axis, this wheter you are making a xy or Txy plot.	What to plot No Plot	Plot Type:	PS-Flash S = 0 Bubble Point Temperature Dew Point Temperature
 Incorporate remainding components as fixed components Show perceptation lines Known Pressure 	1-axis 2-axis 3-axis Multiple Curves Only One Curve Multiple mixture points - independe No Component		Bubble Point Pressure Dew Point Pressure Fugacity Activity Coefficient Fugacity Check Intensive Properties Solubility Products/Indices PH-values Reactive Bubble Point Temp. Reactive Dew Point Temp.
Note: Perform the property calculation by pressing Run on the toolbar	Multiple mixture points - dependent No Component Temperature (K)	First Last Step	
Reset All Reset Axis Back Cancel For Helo, press F1	Pressure (atm) - Independent Comp. (kmole)	0 10 1 0 100 10	

Liquid-Vapour equilibrium calculation

1. Highlight acetone and chloroform, select "VLE-phase diagram", select "rectangular" for plot type, select "acetone" for x-axis, and select "acetone vapour" for y-axis.


Property - C:\CAPEC\ICAS\	work (ICASTIII	
5 🗿 🕸 🏄 🧐 🗹		
ream Number 1	 Select components to include in the calculations 	Properties to calculate
	ACETONE	🗖 PT-Flash
	CHLOROFORM	PH-Flash H = 0
		□ PS-Flash S = 0
		Type: 🔄 🔲 Bubble Point Temperature
	VLE-PhaseDiagram	tangular 🗾 🔲 Dew Point Temperature
	x-axis	Eubble Point Pressure
	ACETONE	🗾 🔲 Dew Point Pressure
Incorporate remaining	y-axis	
components as fixed	ACETONE_Vapour	Activity Coefficient
Components	3-axis	Fugacity Check
Known Pressure		🗾 🔲 Intensive Properties
I KHOWITI IESSUIE	Multiple Curves	Solubility Products
	Only One Curve	 Solubility indices
	Multiple mixture points - independent component	t PH-values
	No Component	🗾 🔲 Reactive Bubble Point Te
	Multiple mixture points - dependent component	🗖 Reactive Dew Point Temp
Note: Perform the property	No Component	🗾 📃 E Separation efficiency curv
calculation by pressing Run on the toolbar		ast Step 🗌 Solubility Calculation
	Temperature (K) 370 0	
Reset All Reset Axis	Pressure (atm)	Organic SLE Organic LL
	0 10	Pure compound correlations
Back Cancel	Independent Comp. (kmole)	

2. Click on "run" **1** to start the computations.

e Edit View Help					
	gram DIAGRAM:				
*********	* * * * * * * * * * * * * * * *	******	******	*********	****
CALCULATED D.	TADOTHER.				
VLE-PhaseDia		370.00 K			
CURVE NO	PROP.	370.00 K X	V DDEG	SURE (atm)	
1	0.00000	0.00000	0.00000	2.81947	
1	0.00000	2.00000	1.46036	2.80296	
1	0.00000	4.00000	2.95769	2.78657	
1	0.00000	6.00000	4.50494	2.77036	
1	0.00000	8.00000	6.11207	2.75443	
1	0.00000	10.00000	7.78667	2.73890	
1	0.00000	12.00000	9.53430	2.72388	
1	0.00000	14.00000	11.35878	2.70949	
1	0.00000	16.00000	13.26236	2.69587	
1	0.00000	18.00000	15.24585	2.68313	
1	0.00000	20.00000	17.30875	2.67141	
1	0.00000	22.00000	19.44931	2.66083	
1	0.00000	24.00000	21.66463	2.65148	
1	0.00000	26.00000	23.95076	2.64348	
1	0.00000	28.00000	26.30276	2.63692	
1	0.00000	30.00000	28.71482	2.63187	
1	0.00000	32.00000	31.18035	2.62841	
1	0.00000	34.00000	33.69212	2.62661	
1	0.00000	36.00000	36.24236	2.62649	
1	0.00000	38.00000	38.82288	2.62811	
1	0.00000	40.00000	41.42522	2.63149	

3. After the calculations are done and for continue with the mixture analysis, first start the plotting facility by clicking in the toolbar. Here you will the rectangular diagram under the tools menu.

Solvent identification with ProCamd

The above problem description and mixture analysis helps us to define the CAMD problem (step 1).

Step 1: We would like to find a solvent that breaks the azeotrope between acetonechloroform (or moves the azeotrope point sufficiently to one side to allow separation by distillation) so that high purity acetone and chloroform can be recovered by extractive distillation. The solvent should be more selective to chloroform than acetone. The solvent, acetone and chloroform must form a totally miscible liquid. The solvent must not form azeotrope with either acetone or chloroform. The solvent should be easy to recover and recycle. The solvent should have favourable EH&S properties.

Step 2: Since the solvent is selective to chloroform, search in the database to find known solvents for chloroform that are also miscible with acetone. Use the CAPEC database
to identify the solvents. Use the "basic options" and search for chloroform.

Basic Search Advanced Search Solubility Search & Change Data	000	arch by: Name Formula Cas-number und Compounds: -	Type the Sea	arch-string:		ch CapecDB
Add New Compound		Casno	Chemname	Smiles	Formula	▲
Change Compound Data		000628-12-6	2-Methoxyethyl-chloroformate	CIC(=0)OCCOC	C4H7CIO3	
Add Solubility Data		000628-64-8	2-Ethoxyethyl-chloroformate	CIC(=0)OCCOCC	C5H9CIO3	
ire Data		001638-63-7	1-(Chloroformyl)benzyl-acetate	CIC(=O)C(c1ccccc1)OC	C10H9CIO3	
		022128-62-7	Chloromethyl-chloroformate	CIC(=0)OCCI	C2H2Cl2O2	
		057933-83-2	Isopropenyl-chloroformate	CIC(=O)OC(C)=C	C4H5ClO2	
		000067-66-3	CHLOROFORM	C(CI)(CI)CI	CHCI3	
		000079-22-1	METHYL-CHLOROFORMATE	O=C(OC)Cl	C2H3ClO2	
		000541-41-3	ETHYL-CHLOROFORMATE	O=C(OCC)Cl	C3H5CIO2	
	व	Record 6)) 4			

View the chloroform data - highlight chloroform and click "view compound"

		View Mole	ecular Structure	Make Report	Back
Properties Page 1.	Properties Page 2. Propertie	es Page 3.	Solvent Properties Pa	age. Group Desc	ription.
Mw (g/mol):	119.38		igS (kJ/(kmol*K)):	295.6	
Omega:	0.2219		RG (Å):	3.249	
Tc (K):	536.4		DM (Debye):	1.0102	
Pc (atm):	54.004		Solpar ((MPa)^.5):	18.92	
Vc (m3/kmol):	0.239		VDW Vol (m3/kmol); 0.0435	
Zc:	0.293		VDW Area (m2/km	ol): 60300000	
Tm (K):	209.55		HFusion (kJ/kmol):	9540	
ТЬ (К):	334.25		HCombust (kJ/kmol	I): -380000	
Τtr (K):	209.63		RI:	1.4431	
Ptr (atm):	0.000672567		FPoint (K):	0	
Vliq (m3/kmol):	0.0805048		FPI (vol %):	0	
igHF (kJ/kmol):	-102900		FPu (vol %):	0	
igGF(kJ/kmol):	-70100		AIT (K):	0	

Note the values of Tb (normal boiling point) and SolPar (Hildebrand Solubility parameter). Note also the solvent properties page – chloroform is soluble in acetone.

rties Page	e 1. Properties Page 2.	Properties Page 3.	Solvent Properties Page.	Group Description.
	Solvent Cas-Number	Solvent Nam	e Solubility	Extra Information
1	007732-18-5	Water	Slightly Soluble	
2	000064-17-5	Ethanol	Miscreble	
3	000060-29-7	Ethyl ether	Miscreble	
4	000067-64-1	Acetone	Soluble	

Now use the "advanced search" option to find solvents based on search of data. Use the Tb and SolPar as constraints as shown below

	Solvent:	[Solvent	Туре:	-	Searc	h CapecDB
	Classification 1: 1. Normal Fluid	[_	Classification (1. >C4	2:	Classific	c <mark>ation 3:</mark> anes	~
v	Property Select 1: Tb (K)	[Property Value 334	1:	0		
			○ less than	C equals	greath	er than	C between
v	Property Select 2: SolPar (kJ/m^3)^(1/2) 💌	[Property Value	2:	21		
			C less than	C equals	O greath	er than	• between

Click on "search CapecDB" to obtain the following result

nd Compounds: ·				
casno	Chemname	mw	Tb	SolPar
026438-26-6	1-n-NONYLNAPHTHALENE	254.42	639.15	17.4093
000057-10-3	n-HEXADECANOIC-ACID	256.43	624.65	19.0989
001454-85-9	1-HEPTADECANOL	256.47	606.15	18.3454
000087-68-3	HEXACHLORO-1,3-BUTADIENE	260.76	488.15	18.7555
000126-73-8	Phosphoric-acid-tributyl-ester	266.32	562.15	18
026438-27-7	1-n-DECYLNAPHTHALENE	268.44	652.15	17.2024
000077-47-4	HEXACHLOROCYCLOPENTADIENE	272.77	512.15	19.184
000084-69-5	DIISOBUTYL-PHTHALATE	278.35	569.65	18.4638
000084-74-2	DIBUTYL-PHTHALATE	278.35	613.15	18.9756
000057-11-4	STEARIC-ACID	284.48	623.15	19.0408
000118-74-1	Benzene,hexachloro-	284.78	598.15	20.3947
000479-45-8	TETRYL	287.15	453.15	17.1965
000141-20-8	Dodecanoic-acid,2-(2-hydroxyethoxy)et	288.43	543.15	17.8
000629-96-9	1-EICOSANOL	298.55	582.15	18.0606
000101-02-0	Phosphorous-acid,triphenyl-ester	310.29	633.15	19
000506-30-9	n-EICOSANIC-ACID	312.54	601.15	18.4509
000109-43-3	DIBUTYL-SEBACATE	314.47	617.65	17.1261
000630-76-2	TETRAPHENYLMETHANE	320.43	704.15	17.0606
000632-51-9	TETRAPHENYLETHYLENE	332.44	693.15	18.1796

Now refine the search by adding that the solvent must also be totally miscible with acetone

•	Solvent: Acetone	Solvent Type: Image: Miscreble Image: Search CapecDB
	Classification 1: 1. Normal Fluid	Classification 2: Classification 3:
•	Property Select 1: Tb (K)	Property Value 1: 334 0
		C less than C equals I greather than C between
V	Property Select 2: SolPar (kJ/m^3)^(1/2) 💌	Property Value 2:
		C less than C equals C greather than O between

nd Compounds:	-			
casno	Chemname	mw	Tb	SolPar
000064-19-7	ACETIC-ACID	60.05	391.05	19.0078
000126-98-7	METHACRYLONITRILE	67.09	363.45	19.094
000078-93-3	METHYL-ETHYL-KETONE	72.11	352.65	18.8787
000071-43-2	Benzene	78.11	353.15	18.7296
000110-83-8	CYCLOHEXENE	82.15	356.05	17.4235
000110-02-1	THIOPHENE	84.14	357.15	20.1206
000505-22-6	1,3-DIOXANE	88.11	379.25	20.6721
000123-91-1	1,4-DIOXANE	88.11	374.65	20.5354
000110-01-0	TETRAHYDROTHIOPHENE	88.17	394.15	20.4608
000616-44-4	3-METHYLTHIOPHENE	98.17	388.65	19.5471
000554-14-3	2-METHYLTHIOPHENE	98.17	385.75	19.3765
000108-91-8	CYCLOHEXYLAMINE	99.18	407.15	18.8281
000080-62-6	METHYL-METHACRYLATE	100.12	373.65	18.5308
000123-54-6	ACETYLACETONE	100.12	411.15	19.5267
000565-69-5	ETHYL-ISOPROPYL-KETONE	100.16	386.65	17.3251
000108-10-1	METHYL-ISOBUTYL-KETONE	100.16	389.65	17.4328
000108-38-3	m-XYLENE	106.17	412.25	18.0535
000106-42-3	p-XYLENE	106.17	411.45	17.9031
000095-47-6	o-XYLENE	106.17	417.65	18.3923

Revise now the CAMD problem definition based on the above information – The solvent can be acyclic hydrocarbons and ketones (aromatic compounds, chlorides, dioxanes are not considered for EH&S concerns). The normal boiling point should be higher than that of chloroform (334 K), the molecular weight could be between 70-120, must not form azeotrope with either acetone or chloroform, and, must be totally miscible with the binary mixture of acetone and chloroform.

Step 3: Start the ProCamd toolbox from the ICAS toolbar by clicking

General problem control

First the type of compounds and size has to be selected. This is done on the "general problem control" page.

Guidelines:

- ☑ Design acyclic compounds containing groups of C, H and O atoms (select all molecule types with C, H & O atoms)
- \square The size should be from 4 to 8 groups and with maximum 1 functional group
- ☑ Select the "perform database search after generation"

"Non-temperature dependent" & "temperature dependent property" specifications

 Specify non-temperature dependent properties. Guidelines:

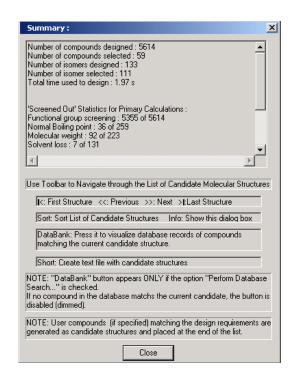
- ☑ Use molecular weight from 70 to 120 g / mole. (uncheck "goal")
- ☑ Normal boiling point from 340 to 420 K. (uncheck "goal")
- 2. No "temperature dependent properties" needs to be specified.

Mixture properties

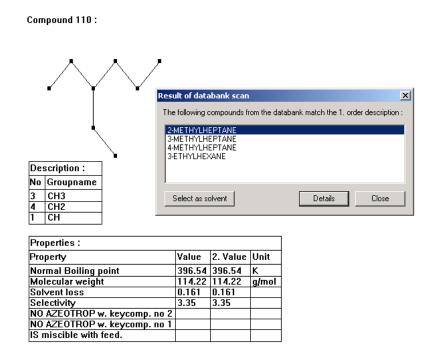
- ☑ Specify the azeotropic mixture as the feed mixture (0.344 acetone and 0.656 chloroform) at 345 K and 1atm.
- ☑ Specify a minimum selectivity of 1.7 for chloroform
- \square Select Chloroform as Solute.

Azeotrope/Miscibility calculations.

- \square For azeotrope calculation specify that the designed compound should not form azeotropes with any of the compounds in the mixture.
- ☑ Miscibility calculation may be made at fixed amount of solvent, calculations at intervals are not necessary, and the final mixture of acetone-chloroform and solvent must be totally miscible.
- ☑ Mass ratio of generated compound should be 3 times (by weight) with respect to chloroform.


Start calculations

Click on "GO" to start the calculations (generate and test with ProCamd)


Results

After the execution has been completed, the results will be shown on the right hand side of the user-interface and a "summary" page of results will be shown. Check the information given and then click on OK to close it. This page can be opened at any time by clicking on "info".

Scroll up or down to analyze the different feasible compounds. Reorder the compounds according to specified sorting criteria.

Use the ">>" or "<<" buttons to move up or down to see the various feasible candidate solvents. If the solvent candidate is available in the database, "databank"

will be highlighted on the lower menu-bar. If the solvent candidate can be represented by ProPred, "propred" will be highlighted. Identify and chose the "**2-methylheptane**" as a solvent, by clicking on "Databank" button.

To transfer the solvent information to ICAS, click on "Select as solvent" in the "Results and Database scan" window.

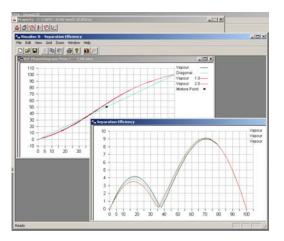
Separation efficiency computation

Problem Setup

In the ICAS main window add the solvent by "selecting the compounds".

Then return to the property "utility" window, highlight acetone and chloroform, select "VLE-phase diagram", select "rectangular" for plot type, select "acetone" for x-axis, select "acetone vapour" for y-axis, select "2-methylheptane" under multiple curves. Check also the items shown in the window below. Click on "run" it to start the computations.

🕌 Property - C:\CAPEC\ICAS\w	ork\ICAS3.in	_ 🗆 🗙
≝₫⊗∦⊗⊻		
Stream Number 1	Select components to include in the calculations: ACETONE CHLOROFORM 2-METHYLHEPTANE	Properties to calculate PT-Flash PH-Flash H = 0 PS-Flash S = 0
	What to plot Plot Type: VLE-PhaseDiagram Rectangula x-axis ACETONE	Bubble Point Temperature Dew Point Temperature Bubble Point Pressure Dew Point Pressure
Incorporate remaining components as fixed components Show precipitation lines Known Pressure	y-axis ACETONE_Vapour 	Fugacity Activity Coefficient Fugacity Check Intensive Properties
I♥ Known Pressure	Multiple Curves 2-METHYLHEPTANE Multiple mixture points - independent component No Component	Solubility Products Solubility indices PH-values Reactive Bubble Point Temp.
Note: Perform the property calculation by pressing Run on the toolbar	Multiple mixture points - dependent component No Component Temperature (K)	Reactive Dew Point Temp. Separation efficiency curves Solubility Calculation Organic SLE Organic LLE
Reset All Reset Axis Back Cancel Ready	Pressure (atm) 1 0 0 2-METHYLHEPTANE (kmole) 0 2 1 Independent Comp. (kmole) 0 100 10	Pure compound correlations


Calculation steps

The calculated values are shown on the output window (as shown below).

Edit View Help							· 👌 · ·
AMMOUNT O	F FIXED 2-METHY	LHEPTANE =	0.000%				
AMMOUNT O	F FIXED 2-METHY	LHEPTANE =	1.000%				>
AMMOUNT O	F FIXED 2-METHY	LHEPTANE =	2.000%				
CALCULATED D	ATAPOINTS:						p
VLE-PhaseDia	gram: Pres.=	1.00 atm					erature
CURVE NO	PROP.	X	Y TEM	PERATURE (K)			ature
1	0.00000	0.00000	0.00000	334.24874			ure
1	0.00000	2.00000	1.20442	334.49985			L.
1	0.00000	4.00000	2.46637	334.75147			ſ
1	0.00000	6.00000	3.80134	335.00328			
1	0.00000	8.00000	5.22123	335.25409			
1	0.00000	10.00000	6.73505	335.50225			
1	0.00000	12.00000	8.34940	335.74577			s
1	0.00000	14.00000	10.06874	335.98246			
1	0.00000	16.00000	11.89557	336.21004			
1	0.00000	18.00000	13.83056	336.42622			
1	0.00000	20.00000	15.87271	336.62874			oint Temp.
1	0.00000	22.00000	18.01937	336.81546			ht Temp.
1	0.00000	24.00000	20.26641	336.98439			cy curves
1	0.00000	26.00000	22.60828	337.13401			m
1	0.00000	28.00000	25.03814	337.26206		•	
idy						CAP NUM SCRL /	
	Heset All Back	Reset Axis Cancel	2-METHYLHEPTANE Independent Comp. (2 1 100 10		

Plot view

Close this window and then click on the "plot-view" button the main property "utility" window to see the plots.

Distillation Design and Simulation

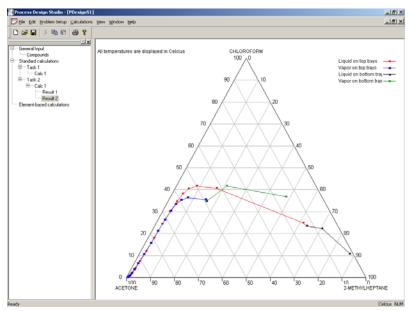
This part shows the use of ICAS, PDS, and the simulation engine for the synthesis, design and analysis of an extractive distillation operation.

Design

- 1. Select the stream in ICAS.
- 2. Start Process Design Studio (PDS) from ICAS
- 3. Go to "Standard calculation" in the project tree, and then go to "Problem Setup" and "Add Task". Include all compounds and accept the default thermo.
- 4. Add a residue curve diagram task. Plot residue curves to find the separation boundaries. Identify the obtainable products.

	(64.5) p 50 bive startingpoint for the residue curve calculation:
t Problem Setup Calculations ⊻iew Window Help Compound selection Model selection In Add Calculation Parallel pounds Calculations	Components: Molepercent 1: ACETONE 37.29 2: CHLOROFORM 57.14 3: 2:METHYLHEPTANE 5.57

5. Now add an equilibrium based distillation design task and remember to set the thermo model to equilibrium based thermo model.



Set the feed conditions to the column (350K, 1atm, 1 mole, 0.1 molefrac Acetone, 0.1 molefrac Chloroform, 0.8 molefrac 2-MethylHeptane). Set reflux ratio to 15. Set the lightkey to Acetone. Set distillate to 0.98 Acetone, 0.01 Chloroform, 0.01 2-MethylHeptane. Click the "Get top/bottom spec" button and specify the distillate flowrate to 0.088. Click "Calculate".

Calculate bottom composition Calculate top composition Specify distillate flowrate: 0.088	nin specificati (Ca
Remember that if the mixture is behaving azeotro	opic, the

Change the reflux ratio until a feasible and acceptable/desirable design is obtained. (The tray-by-tray calculated values are shown if and only if the specified reflux ratio is greater than the minimum. Otherwise, an error message is given.)

7. Click on "results" to get a visual picture.

8. Click "Transfer results to ICAS" Transfer results to ICAS to transfer the data to the ICAS for steady state simulation. Following the steps all the design data will be transfer (number of trays, product specifications, reflux ratio, feed tray, product rates, as well as temperature and composition profiles).

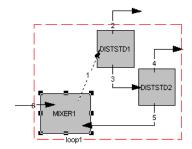
et connection streams	for the column	
Apply design information to:	New column	OK
New column name:	DISTSTD1	Cancel
- Specify column connection		
Feed stream 1: 1	Feed stream 2: 2	
Top product: 2	Bottom product: 3	
Note: The top product shou	Id alwavs have the lowest stream r	number.

Simulation

1. Start ICASSim it to perform a steady state simulation of the extractive distillation column using the results from PDS as initial estimates for the rigorous model.

LIQUID FRACTION	1.00000	0.00000	1.00000
(Kmore/nr)			
ACETONE	10.00000	8.88275	1.11725
2-METHYLHEPTANE	80.00000	0.04789	79.95211
CHLOROFORM	10.00000	0.06936	9.93064
TOTAL	100.00000	9.00000	91.00000

 Design and add the solvent recovery column: Use the driving forced based distillation design algorithm. Go back to PDS and choose the driving force algorithm to design the second (solvent recovery) column). The specifications and results are highlighted below:


Define binary mixture:	Azeotrope information:
Component 1: Component 2:	No azeotrope, Light Key compounds is: CHLOROFORM
CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFOR CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CHLOROFORM CH	Construction of Chinam
EightKey	Secondary separation efficiency: SSE max, X:0.300000, Y:0.745459, SSE:0.445459
System pressure 1 Generate VLE data	
Kb of Light Compound: 0.001 Xd of Light Compound: 0.999	- III
Kfeed of Light Compound: 0.11 R/Rmin ratio: 1.2	Light product: 100 % CHLOROFORM
	Heavy product: 100 % 2-METHYLHEPTANE
Number of Plates for 1st Algorithm: 20 🔽 Use of Scaling Factors	Vapor composition of feed: Subcooled liquid
Start calculation	Rmin: 1.5691696 R: 1.8830035 Minimum No Plates: 13
	Feed plate location

3. Transfer the results to ICAS as in steps as in steps 8-9 section 5.1. ICAS will open up the following dialogue to place the second column.

b	Set connection streams for the column	×
	Apply design information to: New column New column name: DISTSTD2 Specify column connection stream numbers Feed stream 1: 3 Feed stream 2: 2 Top product: 4 Bottom product: 5 Note: The top product should always have the lowest stream nuccompared to the bottom product stream.	OK Cancel

4. Add the recycle-loop in ICAS and perform simulation on the total flowsheet: The recycle loop is closed manually by placing a mixer. In stream 6 the flows should be 10 kmole/h acetone, 10 kmole/h chloroform, 1 kmole/h 2-methylheptane. In stream 1 the values should be marked as initial estimates. Finally the outlet temperature from the mixer should be 350 K.

STREAM NUMBER	1	2	3	4
TEMPERATURE (K)	350.00000	332.04270	373.15131	342.63881
PRESSURE (atm) ENTHALPY(K/Kmole)	-27615.86917	-24505.51626	-26910.01571	-14287.60495
ENTROPY(1/Kmole)	41.50294	35.62145	44.69363	37.41181
ENTROPY(1/Kmole) U-ENERGY(K/Kmole)	-27616.02699	-24532.76285	-26910.18654	-14315.72103
DENS. (Kmole/m^3)	6.33628	0.03670	5.85403	0.03557
VAPOUR FRACTION	0.00000	1.00000	0.00000	1.00000
LIQUID FRACTION		0.00000		
(Kmole/hr)-				
ACETONE	10.00039	9.05476	0.94563	0.94524
CHLOROFORM	10.98840	0.85620	10.13220	9.14408
2-METHYLHEPTANE	89.89447	0.06853	89.82593	0.93118
TOTAL	110.88325	9.97949	100.90376	11.02051
STREAM NUMBER	5	6		
TEMPERATURE (K) PRESSURE (atm) ENTHALPY(K/Kmole) ENTROPY(1/Kmole) U-ENERGY(K/Kmole) DENS (Kmole)	389.00747	350.00000		
PRESSURE (atm)	1.00000	1.00000		
ENTRALPI(K/Kmole)	-2/545.64659	-19114.10880		
LNIROPI(I/Kmole)	47.00130	10142 02003		
DENS. (Kmole/m^3)	-2/345.03001	-19142.02093		
VAPOUR FRACTION	J. 12025	0.03402		
	1.00000			
(Kmole/hr)-				
ACETONE		10.00000		
CHLOROFORM		10.00000		
2-METHYLHEPTANE	88.89475			
TOTAL	89 88325	21.00000		

Optimisation

Save your problem

Go the following directory C:\CAPEC\ICAS\work\Ex\Opt\AcetoneChloro

Open the file AC_CH_MPE.ICS and then click on ^{DPT} to enter the optimisation toolbox.

Optimiser			×
Available objects Units DISTSTD1 DISTSTD2 DIV1 MXER1 MXER2 MIXER2	Available parameters Design	Defined variab Design RebRfxDist1 RebRfxDist2 SolventFlow	Object Product2A(Product4Cl QDiv1 Qmixer1 Qmixer2 Qmixer3
Streams 1 2 3 4 6 7 ▼	Object	Delete	CondDist1 CondDist2 RebDist2 Purity2Ac Durity2Ac Delete
Tear streams 1 1	Defined equations Objective [-10.2638"Product2Ac-21.3888"Product4CIFm+ Constraints	33.00065*Solve	Set objective
Non-flowsheet design variable File Load Save	Purity Acetone : Purity2Ac Purity Chloroform : Purity4ClF	×	Add constraint Delete constraint
Advanced settings	View results		OK Cancel

- Click on "set objective" to see the objective function
- > Double click on the "constraints" names to see the constraint functions
- > Double click on the "design" variables to see their details
- Click on "advanced settings" to see the NLP solver specification
- Click on "OK" to return to ICAS and then click on *i* to start the optimisation run. On convergence, click on *i* to return to the optimisation window and then click on "view results" to see the detailed optimisation results.

Related problems

Find solvents to separate acetone from methanol separation (VLE separation) Find solvents for methyl acetate from methanol separation (VLE separation)

3.1.2 Azeotrope Search

Find all binary mixtures that form an azeotrope with ethanol at 1 atm pressure and where the second compound is a cyclic compound, with 300 K $< T_b < 500$ K.

To solve this problem, we need to use ProCamd ("General problem control", "nontemperature dependent. properties", "mixture properties" and "azeotrope/miscibility" pages). A sample of the data specified is shown below.

Problem Title: Temperature depd. props. Title binary azeotrope with ethanol (totally miscible) Generate: Azeotrope/Miscibility Calculations © Acyclic Compounds © Generate Isomers Autoslack in initial generation: Min: © Cyclic Compounds 10%	General Problem Control	Non temperature depd. props.
Generate: Generate Problem Control N C Acyclic Compounds Generate Isomers Min: C Aromatic Compounds Autoslack in initial generation: Normal Boiling Point (K): 300		<u></u>
Acyclic Compounds Autoslack in initial generation: Acromatic Compounds Autoslack in initial generation: Autoslack in initial generation:	Title Dinary azeotrope v	vith ethanoi (totally misciple)
Advante Compounds Autoslack in initial generation: Autoslack in initial generation: Autoslack in initial generation: The second	Generate:	
	C Aromatic Compounds	Autoslack in initial generation:
	Generate Ketones	Generate Ethers
	_ ·	
🔽 Generate Aldehydes 🔲 Generate Amines	_	I Generate Amides
✓ Generate Aldehydes □ Generate Amines ✓ Generate Acids □ Generate Amides	Generate Phenols	

- General:			dation Calculatio
Model: UNIPAR - Original UNIFAC (VLE) UNIPARL - Original UNIFAC (LLE) UNIPARL - Original UNIFAC (LLE) UNILIN - Original UNIFAC (2 parameter, lin)	near VIE)	General: Perform Azeotrope calculations Perform Miscibility calculations Perform SLE calculations Azeotrope Specifications: ETHANOL	
C UNIMOD - Modified UNIFAC (2 parameter, Calculation Type: Culculation Type: Culculations Culculations Culculations Culculations Culculations	, MHV2, VLE) s: ure (K): 300	c c	Don't calculat No azeotrope Form azeotrop
CSelected Key Components:	Edit	Miscibility Specifications: Perform calculations in an interval Final mixture should be: Totally Miscible Mass ratio of g	
Molefractions of Key Components:		C Partly/Totally Miscible compound sho Partly Miscible with respect to: Non Miscible Does not matter	,

One of the feasible mixtures is shown below (note that what ProCamd provides is the information that the two compounds will form a single-phase solution. The exact compositions will need to be calculated separately, depending on the desired mixture property, for example, the bubble point temperature.

DM	pound 37 :	Propert	ies :									
		Property	Property Value Unit									Unit
)es	scription :	Normal	Normal Boiling point 400.14 K								к	
lo	Groupname	AZEOTE				1 at 2	Xgen/	Taz:	0.60/	341.5	53 K	
	CH2 CH2COO							I			I	
	CH2COO	Miscibi	lity :									
		T\×	0.00	0.11	0.22	0.33	0.45	0.56	0.67	0.78	0.89	1.00
		300.00	М	М	М	М	М	М	М	М	М	M
		325.00	М	м	М	м	м	М	М	м	М	M
		350.00	М	IM	М	м	м	М	М	м	М	M
		375.00	М	М	М	М	М	М	М	М	М	M
		400.00	м	М	м	м	м	м	М	м	м	M

• Repeat the above problem to find acyclic compounds that form azeotropes with ethanol

• Repeat the above problem where the cyclic compounds do not form azeotrope with ethanol

3.2 Solvent Search for Liquid-Liquid Separation & Mixture Design

3.2.1 Solvent search for liquid-liquid extraction

We have a water stream that is contaminated with phenol (0.0142 mole fraction of phenol in water). We need to remove the phenol through solvent-based liquid-liquid extraction. The solvent must be totally immiscible with water and dissolve the phenol. The extraction operation will take place at 298 K and 1 atm. Find an environmentally friendly solvent.

For this example, we skip steps 1 and 2 and go directly to step 3 for the following CAMD problem specification.

- General problem control: Find acyclic compounds (and isomers) from hydrocarbons plus alcohols, ketones, aldehydes, acids, ethers and esters; minimum number of groups is 2, maximum number of groups is 9, maximum number of "functional" groups is 6, maximum number of same "functional" groups is 6; search the database.
- Non-temperature dependent properties: Maximum normal boiling point is 450
 K; Minimum open cup flash temperature is 320 K; Minimum LogP (octanol/water) is 1.5
- Temperature dependent properties: Upper limit of density at 298 K is 0.9; lower limit of vapour pressure at user specified temperature of 360 K is 0.003 bar
- **Mixture properties**: Select "perform mixture calculations"; select UNIPARL Original UNIFAC-LLE; LLE calculation type; phenol and water as the selected key components (note that if a stream with phenol and water was defined before entering ProCamd, this information would be automatically transferred together with the mole fractions of the mixture); select phenol as the solute; and the

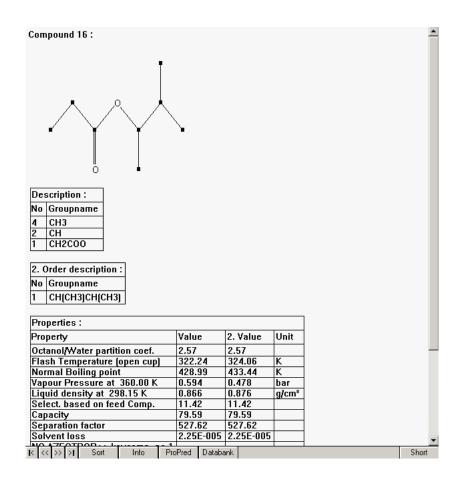
following constraints – maximum solvent loss = 0.001, minimum separation factor = 80, minimum solvent capacity = 2, minimum feed selectivity = 8

• Azeotrope/miscibility calculations: Select azeotrope calculation and miscibility calculation; solvent must not form azeotrope with phenol;

perform miscibility calculation with fixed repeat the calculations with miscibility amount of solvent (1.4 times that of calculations at intervals of 0-1 mole phenol) fraction in 10 intervals and 290-300 K in 2

 Miscibility Specifications: Perform calculations in an in 	iterval
Final mixture should be: C Totally Miscible C Partly/Totally Miscible C Partly Miscible Non Miscible C Does not matter	Mixture specifications: Mass ratio of generated compound should be 1.4 with respect to: Phenol
Interval specifications Molefraction from Temperature (K) from 290	to 1 in 10

Miscibilty Specifications:	nterval
Final mixture should be: C Totally Miscible C Partly/Totally Miscible C Partly Miscible C Non Miscible C Does not matter	Mixture specifications: Mass ratio of generated compound should be 1.4 with respect to: Phenol
Interval specifications Molefraction from 0 Temperature (K) from 290	to 1 in 10 ± steps to 300 in 2 ± steps


intervals and "partly miscible"

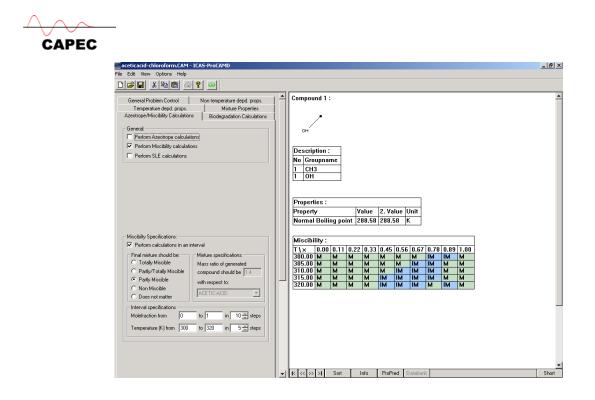
Start calculations by clicking on "GO" – when calculations are completed, the following "summary" of results is given by ProCamd (as shown below).

Summary :
Number of compounds designed : 6779 Number of compounds selected : 47 Number of isomer selected : 404 Number of isomer selected : 77 Total time used to design : 3.48 s
The group : COD was not used for design because of missing data for : Acentric factor
Screened Out' Statistics for Primary Calculations : Octanol/Water partition coef. : 5155 of 6779
Use Toolbar to Navigate through the List of Candidate Molecular Structures IK: First Structure Previous ILast Structure Sort: Sort List of Candidate Structures Info: Show this dialog box DataBank: Press it to visualize database records of compounds
matching the current candidate structure.
Short: Create text file with candidate structures
NOTE: "DataBank" button appears ONLY if the option "Perform Database Search" is checked. If no compound in the database matchs the current candidate, the button is disabled (dimmed).
NOTE: User compounds (if specified) matching the design requirements are generated as candidate structures and placed at the end of the list.
Close

The structural description of the generated (feasible) molecule together with the calculated property (constraints) values is shown on the left-hand side of the user-interface for each feasible molecule.

Repeating the calculations with miscibility calculations at intervals of composition and temperatures, gives the same results with the following additional information

Miscibi	lity :									
T\×	0.00	0.11	0.22	0.33	0.45	0.56	0.67	0.78	0.89	1.00
290.00	IM	IM	IM	IM	IM	Ы	IM	IM	IM	м
300.00	IM	IM	IM	IM	IM	IM	М	IM	IM	М


Step 4: Verification – Add the selected solvent to the phenol-water system and use ICAS-Utility option to draw the ternary LLE phase diagram to verify the creation of two phases and separation of phenol from water.

Related problems

* Find non-aromatic organic molecules (with T_b less than 400 K) that when added to a mixture of acetic acid – chloroform in the liquid phase, causes a phase split. Assume T=300 K and P=1 atm

ProCamd problem definition requires General Problem Control; Non-temperature Dependent properties; Mixture Properties; and, Miscibility Calculations. The Screen shots below show the problem definition pages and the results from ProCamd.

aceticacid-chloroform.CAM - ICAS-ProCAMD		_ & ×
File Edit View Options Help		
Accetope-Minobility Calculations Biodegradation Calculations General Problem Control Non temperature depd props. Temperature depd props. Moture Properties General Proform Minture Calculations Pr Perform Minture Calculations Model C UNIPAR - Original UNIFAC (ME) Model C UNIPAR - Original UNIFAC (ME) UNIPAR - Original UNIFAC (ME) C UNIPAR - Original UNIFAC (Z parameter, linear, VLE) Clustrations C UNIMOD - Modified UNIFAC (2 parameter, linear, VLE) Clustrations C VLE - Calculations Temperature (k): 300 Persure (bit): 1 Selected Kay Components: Edit ACETIC-ACID 0.5000 DHLOROPORM 0.5000 ChLOROPORM 0.5000 Constraint: Min: Max	Compound 1 : Summary: Number of compounds designed : 4497 Number of composed 4497 Number of composed 4497 Number of addition : 1037 s Use Toobst to Navigate through the List of Candidate Molecular Structures IF: First Structure << Previous >>>.Next >Last Structure Sort Sort List of Candidate Structures IF: First Structure << Previous >>>.Next >Last Structure Sort Sort List of Candidate Structures IF: First Structure << Previous >>>.Next >Last Structure Note: "DataBark": Next Altor appart OhLY if the option "Perform Databare Note: "DataBark": break detabare matchs the current candidate. the button is dirabed (dirmed). Note: Use compounds (if specified) nations the design requirement are prevented as candidate structures and placed at the end of the list. Core	
	I IC << >> >I Sort Info ProPred Databank	Short

* Find solvents for hexane-benzene separation (LLE separation)

3.3 Solvent-based Solid Separation

3.3.1 Solvent Substitution

We have phenol deposits as a solid and we need to clean the equipment before our product can be produced. We already know that we can use benzene or toluene to dissolve the phenol. We would like to investigate if it is possible to use a more environmentally friendly anti-solvent to extract the phenol.

Step 1: Problem Formulation

We need to establish the needed properties for the replacement solvent. We can use the CAPEC database to search for the properties of phenol, benzene and toluene. In the screen shot below, the properties of phenol are highlighted (see appendix 1 on how to perform search in the CAPEC database M.

Properties Page 1.	Properties Page 2. Properties Page	e 3. Solvent Properti	es Page. Group Description.	1	Other properties:
Name:	Phenol				$T_m = 314.06 \text{ K}$
Synonym 1:	PHENOL				$T_{\rm b} = 454.99 \ {\rm K}$
Synonym 2:					$\delta_{SP} = 24.63 (MPa)^{1}$
Synonym 3:	Phenol				$O_{SP} = 24.03 (IVIF a)$
Cas-No:	000108-95-2	Mathias CC1	0.9723		$H_{fus} = 11510 \text{ kJ/km}$
Formula:	Сенео	Mathias CC2	1.5836		
Smiles:	Oc(cccc1)c1	Mathias CC3	-3.3395		$T_c = 694.25 \text{ K}$
Classification 1:	3. Polar Associating Compounds	Antoine A:	6.93051		$P_{c} = 60.498$ atm
Classification 2:	1. Organic	Antoine B:	1382.65		$1_{\rm c} = 00.498 {\rm dum}$
Classification 3:	1. Alcohols	Antoine C:	159.493		$V_c = 0.229 \text{ m}^3/\text{kmo}$
Date:	10-06-1999	Min Temp. (K):	314.06		0.000 3/1 1
Notes:		- Max Temp. (K):	694.25		$v = 0.889 \text{ m}^3/\text{kmole}$

Pure component data for Phenol obtained by "basic search" in the CAPEC database

Based on the phenol data, we can formulate the solvent search problem as follows – The temperature of the operation is below 314 K (assume 300 K), at this condition, solvent plus phenol must form a liquid solution and the composition of the phenol must be reasonably high. As a measure of solubility, initially, we can search for solvents having melting points below 250 K and having the Hildebrand solubility parameters $22 < \delta_{SP} < 26$ (MPa)^{1/2}. This problem can also solved through the CAPEC database (using the "advanced search" option) or ProCamd.

Step 2: Generation of candidates through CAPEC database search

To use the advanced search option in the CAPEC database, click on \mathbb{M} and then click on "advanced search" in the CAPEC database. Then select the options for the search engine as shown below.

	Solvent:	Solvent Type:
	Classification 1: 1. Normal Fluid 🗾 🔽	Classification 2: Classification 3: [1.>C4 □
•	Property Select 1: Tm (K)	Property Value 1: 250 0
		● less than C equals C greather than C between
•	Property Select 2: SolPar (kJ/m^3)^(1/2) 💌	Property Value 2: 22 26
		C less than C equals C greather than ⊙ between

Now click on Search CapecDB to start the search engine. The search result is shown in the figure below. It can be noted that 41 candidates have been found.

casno	Chemname	mw	Tm	SolPar
000050-00-0	FORMALDEHYDE	30.03	181.15	23.8248
000074-89-5	METHYLAMINE	31.06	179.75	23.1035
000075-05-8	ACETONITRILE	41.05	229.35	24.0497
000151-56-4	ETHYLENEIMINE	43.07	195.25	24.6166
000107-18-6	ALLYL-ALCOHOL	58.08	144.15	24.6613
000071-23-8	1-PROPANOL	60.1	147.05	24.4518
000067-63-0	ISOPROPANOL	60.1	183.65	23.4083
000075-52-5	NITROMETHANE	61.04	244.65	25.7584
000109-97-7	PYRROLE	67.09	249.75	24.859
000068-12-2	N,N-DIMETHYLFORMAMIDE	73.09	212.75	23.9553
000646-06-0	1,3-Dioxolane	74.06	178.15	23.2
000078-83-1	2-METHYL-1-PROPANOL	74.12	165.15	22.9094
000078-92-2	2-BUTANOL	74.12	158.45	22.5414
000071-36-3	1-BUTANOL	74.12	183.35	23.3536
000079-24-3	NITROETHANE	75.07	183.65	22.9956
000109-86-4	2-METHOXYETHANOL	76.1	188.05	23.2036
000107-20-0	CHLOROACETALDEHYDE	78.5	110.15	22.9669
000107-07-3	2-CHLOROETHANOL	80.61	205.65	25.3838
000096-48-0	gamma-BUTYROLACTONE	86.09	229.85	25.6599

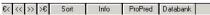
Using the results from above, the next step would be to perform a search through ProCamd, which will generate new molecules as well as check known compounds.

Step 3: Generation of candidates through ProCamd

We start by entering ProCamd from ICAS and then we need to fill-out the pages according to the instruction manual from section 1. The screens corresponding to the different pages of ProCamd are shown below.

Problem Title: Title solvent substitution (solvents for phenol) -SLE Generate: • Acyclic Compounds • Aromatic Compounds • Cyclic Compounds • Cyclic Compounds • Cyclic Compounds • Cyclic Compounds • Generate Alcohols • Generate Anides • Generate Compounds containing silicon • Generate Compounds containing double bonds	Normal Melting Point (K):	6 Go 373 38 314 26 2 2 2
	Total Solubility. Param. (MPa*): 22 LogP (Octanol/Water): 1.5 Temperature depd. props.	26
	LogP (Octanol/Water): 1.5	2
 Aromatic Compounds Cyclic Compounds Cyclic Compounds Image: Cyclic Cyclic Compounds Image: Cyclic Cyclic Compounds Image: Cyclic Cyclic	Temperature depd. props.	
C Cyclic Compounds Preselection	General:	ixture Prope
✓ Generate Alcohols Generate Esters ✓ Generate Ketones ✓ Generate Ethers ✓ Generate Aldehydes Generate Amines Generate Acids Generate Amides Generate Phenols Generate Compounds containing silicon	General:	ixture Prope
▼ Generate Ketones ▼ Generate Ethers ▼ Generate Aldehydes □ Generate Amides □ Generate Acids □ Generate Amides □ Generate Phenols □ □ Generate Compounds containing silicon □	General:	ixture Prope
▼ Generate Aldehydes □ Generate Amines □ Generate Acids □ Generate Amides □ Generate Phenols □ □ Generate Compounds containing silicon □		
Generate Acids Generate Amides Generate Phenols Generate Compounds containing silicon	Perform Mixture Calculations	
Generate Compounds containing silicon		
	- Model:	
Contracto compositido contratining double bondo	C UNIPAR - Original UNIFAC (VLE)	
Generate Compounds containing triple bonds	C UNIPARL - Original UNIFAC (LLE)	
Generate Compounds containing flourine	 UNILIN - Original UNIFAC (2 parameter, line 	
Generate Compounds containing chlorine		
Generate Compounds containing bromine	 UNIMOD - Modified UNIFAC (3 parameter, 	MHV2, VLE
Generate Compounds containing iodine	Calculation Type: Conditions:	
Generate Compounds containing sulphur	C VLE - Calculations Temperatu	e (K): 298
Selected Groups:	LLE - Calculations Pressure (b)	ar): 1
CH3 CH2 CH C OH CH3CO	Selected Key Components:	
	Phenol	_
Edit Groups		E
User specified compounds:	Molefractions of Key Components:	
CH31CH23OH1 Delete	Phenol 1.0000	
CH3 2 CH2 1 CH 1 OH 1		
CH32CH10H1 Define Define		1
	Select Solute:	

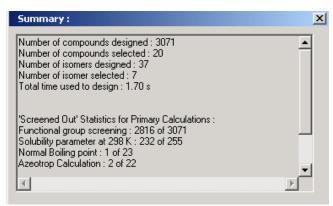
Problem specification pages from ProCamd for the solvent substitution exercise


Azeotrope/Miscibility Calculations	Biodegradation Calculations
General: Perform Azeotrope calculations	
Perform Azeotrope calculations Perform Miscibility calculations	
Perform SLE calculations	
Azeotrope Specifications:	
Phenol	C Don't calculate C No azeotrope C Form azeotrope
1	
SLE Specifications	
Temperature 298 K	
 Solid Phase must exist 	
C Solid Phase must not exist	

1:
1:

^	
он	`

Des	scription :
No	Groupname
1	CH3
1	CH2
1	OH

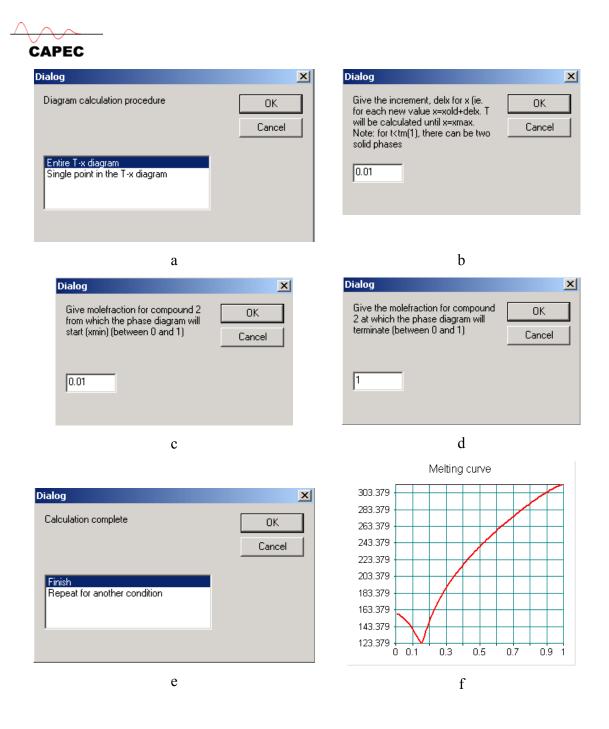

Properties :			
Property	Value	2. Value	Unit
Octanol/Water partition coef.	0.156	0.156	
Solubility parameter at 298 K	25.01	25.01	MPa ¹¹²
Normal Melting point	164.57	164.57	K
Normal Boiling point	330.01	330.01	K
Solvent power	0.151	0.151	
NO AZEOTROP w. keycomp. no 1			
Solid phase of keycomp. 1 at X1	-	0.736	

Problem specification page from ProCamd.

Results section from ProCamd. Note that "ProPred" and "Databank" are highlighted. This means that we can use these tools for this compound.

The solution statistics are shown in the figure below. This screen can also be obtained by clicking on "Info".

From the figures above, it can be noted that ethanol is also a feasible candidate as a solvent. We will verify the feasibility of ethanol in the next step.



Step 4: Verification of solvent through a solid-liquid equilibrium phase diagram

In order to obtain a solid-liquid equilibrium phase diagram, follow the steps given in appendix A3. The following steps are necessary:

- 1. Draw a stream in the ICAS-main window
- 2. Select $\overline{\mathbf{Q}}$ the compounds phenol and ethanol
- Select the property models (select UNIFAC-VLE model for liquid phase activity coefficients
- 4. Double click on the stream, specify the pressure (1 atm) and any values for temperature (for example, 300 K) and composition (for example, 1 and 1). Click on Located on the top left hand corner.
- 5. Click on "Organic SLE" and then specify the data as shown below.

💑 SLE Organic	2
Compounds	Melting curve
Define System Name Tm 1 ETHANOL 159.05 2 Phenol 314.06	1 0.9 0.9 0.0 0.0 0.0 0.8 0.7 0.6 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.0 0.3 0.2 0.0 0.0 0.0
Close	0.1 0.3 0.5 0.7 0.9 1

The specifications to generate the "entire T-X" diagram with the organic SLE toolbox of ICAS. Figure f shows the generated diagram. Clearly, at 300 K, a large amount of phenol can be dissolved.

Exercises related to solvent substitution

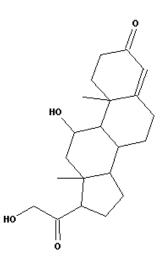
- A. Solve the problem in step 2 with ProCamd (note that only the "general problem control" and the "non-temperature dependent properties" need to be specified.
- B. Verify another solvent through step 4
- C. If you change the solubility parameter bounds to less than 22 or more than 26, will the solvents be valid for phenol? Find solute products that will be valid for solvents with solubility parameter < 22 and > 26 (use both database search and ProCamd).
- D. Find solvents for Naphthalene.

3.4 Design of Backbones and Termination of Backbones

3.4.1 Generate backbone in ProPred, terminate in ProCamd & verify in ProPred

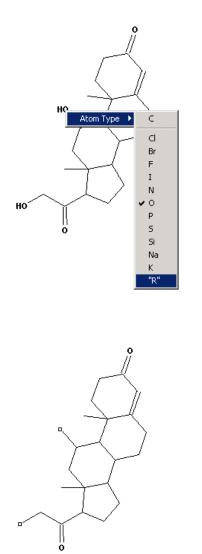
In this problem, we will start with ProPred, take a known molecule (for example, Corticosterone), use the new features in ProPred to create free attachments in the molecule (that is, create a backbone). The Backbone is then transferred to ProCamd, where terminated structures are generated.

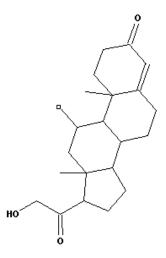
Step 1: Start ProPred from ICAS


Step 2: Click on \blacksquare (database), click on "Find CAS", type the CAS Number for Corticosterone (00005-22-6), select the compound by clicking on OK.

CAS	Name	Smiles	
000003-72-3	Octachlorobornane (Parlar 38)	CIC(CI)C1(C)C2CC(CI)(CI)C1(CC2(CI)CI)C	10
000003-72-4	Octachlorobornane (Parlar 39)	CICC1 (CCI)C2C(CI)C(CI)C1 (CCI)C(CI)(CI)	22
000003-72-5	Octachlorobornane (Parlar 42)	CICC1 (C(CI)CI)C2CC(CI)(CI)C1 (CCI)C(CI)	22
000003-72-6	Octachlorobornane (Parlar 51)	CICC1 (CCI)C2CC(CI)(CI)C1 (CC2(CI)CI)C(
000003-72-7	Nonachlorobornane (Parlar 56)	CICC1 (C(CI)CI)C2CC(CI)(CI)C1 (C(CI)CI)C	С
000003-72-8	Nonachlorobornane (Parlar 58)	CICC1 (CCI)C2C(CI)C(CI)(CI)C1 (CC2(CI)C)C
000003-72-9	Nonachlorobornane (Parlar 59)	CICC1 (C(CI)CI)C2CC(CI)(CI)C1 (C(CI)CI)C	С
000003-73-0	Nonachlorobornane (Parlar 63)	CICC1 (C(CI)CI)C2C(CI)C(CI)C1 (C(CI)CI)C	
000003-73-1	Decachlorobo Guanidine hyd Select Data [Find Text]		С
000050-01-1	Guanidine hyd		
000050-02-2	Dexamethasor Enter Text to Search For:	(0)C(C)CC2C3CCC4=CC(=0	
000050-03-3	Hydrocortisone 000050-22-6	C(=0)C1(0)CCC2C3CCC4=0	С
000050-04-4	Cortisone acet	C(=0)C1(0)CCC2C3CCC4=C	С
000050-06-6	Phenobarbital)NC(=0)NC1=0)c2ccccc2	
000050-07-7	Mitomycin C OK Car	ncel C3CN1C4=C(C(=0)C(N)=C	C)
000050-11-3	Metharbital	(=0)NC(=0)N(C)C1=0	
000050-12-4	Mesantoin	CCC1(NC(=0)N(C)C1=0)c2ccccc2	
000050-13-5	Meperidine	CCOC(=0)C1(CCN(C)CC1)c2ccccc2	
000050-14-6	Vitamin D2	0C1CCC(=C)C(=CC=C2CCCC3(C)C(CC	C2
000050-18-0	Cyclophosphamide	CICCN(CCCI)P1(=0)NCCC01	
000050-19-1	Hydroxyphenamate	CCC(0)(COC(=0)N)c1ccccc1	
000050-21-5	Propanoic acid, 2-hydroxy-	0=C(0)C(0)C	
000050-22-6	Corticosterone	OCC(=0)C1CCC2C3CCC4=CC(=0)CCC	41
•			ĩ

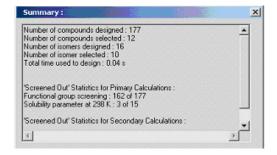
Step 3: ProPred draws the molecule and predicts the properties (as shown below)


- 1	۶. ۲		ſ	
Summary Mar	rero and Gani C	onstantinou an	d Gani Joback	and 💶 🕨
Property Valu included in H	ues estimated h ProPred	by using met	hods	<u> </u>
Compound Name	e : Corticos : 000050-2 les : OCC(=0)0	sterone		
Compound Smil	Les : 0CC(=0)(510002030004	=CC(=0)CCC4(0)030(0
Compound For; Mw (q∕mol)	nula : C21H3OO4 : 346.46	4		
Best estimate	es are suggeste criteria. See o	ed for each	property acc	ording
in the corres	sponding pages	letalled est	imates throug	an each_
WARNING:				
	some estimated r if the meltin			
aight be poor	: if the meltin	ng point is	far above 25	ок
Property	Method	Unit	Est.Value	Exp.V
	nethod			Exp. v
Tm Tb	MG MG	K	455.30 690.57	454.1 N⁄A
To	MG	ĸ	922.59	N/A N/A
Pc	MG	bar	18.82	N/A
Ve Ze	MG MG	cm³/mol	1083.09 0.266	N/A N/A
Gf[298K]	MG	kJ∕mol	-404.20	N/A
Hf[298K]	MG	kJ∕mol	-911.63	N×A
omega Hv[298K]	CG ******	kJ∕mol	1.324 N∕A	N/A N/A
Hv[Tb]	MG	kJ/mol	128.18	N/A
Hfus	MG	kJ/mol	45.80	N/A
Sfus	MG	J∕(mol * K)	100.86	N/A
Vm[298K]	*****		N∕A 431.69	N/A
Vm[Tb] Sol. Par.[29	MG 98K1 MG	cm³∕mol MPa½	431.69	N/A N/A
Refractive 1		HF 872	1.89	N/A
Molar Refrac			N/A	N/A
Surf.Tens.[2	298K] *****	dyn/cm	N/A	N/A
G.T. Temp.	*****	K	N/A	N/A
Log(Kow)	MG	T ((T))	2.41	1.94
Log(Ws) Closed Flash	MG Temp CG	Log(mg∕L) K	1.82 534.57	2.29 N⁄A
Open Flash 7		ĸ	606.27	N/A
Hansen Disp		MPa½	16.49	N/A 🗸
•				


CAPEC

Step 4: Remove the OH group connection from the molecular structure at the two locations (as shown below)

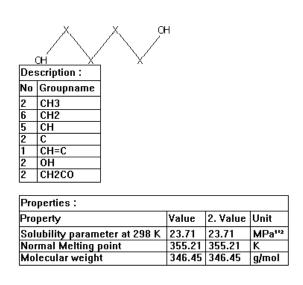
Backbone with one-free attachment


Backbone with two-free attachments. Note that as ProCamd generates molecular structures only with the Constantinou & Gani groups, it must be possible for the Constantinou & Gani method to represent the backbone. Otherwise, ProPred will not launch ProCamd.

Step 5: Launch ProCamd from ProPred from the tools menu in ProPred.

Step 6: Fill-out the necessary problem definition pages in ProCamd (general problem control, non-temperature dependent properties) as shown below.

Temperature depd. props. Mixture Properties General Problem Control Non temperature depd. props. Problem Title:	Azeotrope/Miscibility Calcula Temperature depd. prop General Problem Control ProPred properties Molecular Weight (g/mol):	is. No <u>Min:</u>	Biodegradatio Mixture on temperature Max:	e Propertie
Title Generate: Acyclic Compounds	Temperature depd. prop General Problem Control ProPred properties	is. No <u>Min:</u>	Mixture on temperature	e Propertie
Title Generate: Acyclic Compounds	General Problem Control ProPred properties	Min:	on temperature	
Generate:	ProPred properties	Min:	·	dopa, pr
Acyclic Compounds Generate Isomers	· · ·		kd sur	
Acyclic Compounds Generate Isomers	Molecular Weight (g/mol):		MICK.	Goal:
Autoria initial analysis		340		
Aromatic Compounds				
± 10%	Normal Melting Point (K):	350		j t
C Cyclic Compounds	Total Solubility, Param, (MPa*	ય: 22	25	
Image: Constant C				


Step 7: Terminate the backbone by clicking on "GO". The following results "summary" is obtained.

The generated (feasible) compound number 2 is Corticosterone.

Compound 2 :

Step 8: Save the backbone-termination problem as "save ProPred backbone problem" under the file menu. To use this file later, the saved backbone file must be loaded from the file menu.

Note that for backbone termination step, the options for ProPred properties and database search cannot be used.

3.4.2 Generate backbone in ProCamd and terminate (manually) in ProPred

In this problem, we will first generate a backbone with ProCamd using only the C & H atoms and with 1 free-attachment in the backbone. We will then go to ProPred to draw the molecular structure and work on the structure without terminating the structure. We will then launch ProCamd from ProPred to find the final terminated structure through ProCamd.

Step 1: Start ProCamd and specify the following backbone generation problem.

CAPEC	
Azeotrope/Miscibility Calculations Biodegradation Calculations Temperature depd. props. Mixture Properties General Problem Control Non temperature depd. props. Problem Title: Title	User specified compounds:
Generate: Generate Isomers Acyclic Compounds Autoslack in initial generation: Cyclic Compounds Lutoslack in initial generation: Cyclic Compounds Lutoslack in initial generation: Preselection Lutoslack in initial generate Esters Generate Alcohols Generate Esters Generate Alcohols Generate Esters Generate Aldehydes Generate Amines Generate Acids Generate Amines Generate Compounds containing silicon Generate Compounds containing double bonds Generate Compounds containing triple bonds Generate Compounds containing triple bonds	Extended Problem Control Minimum number of groups: 2 Maximum number of groups: 11 Minimum number of "functional" groups: 0 Maximum number of "functional" groups: 0 Maximum number of "functional" groups: 0 Maximum number of same "functional" group: 4 Perform Database search after generation 0 Calculate properties with ProPred engine, after initial screeening
Generate Compounds containing fluorine Generate Compounds containing chlorine Generate Compounds containing bromine Generate Compounds containing iodine Generate Compounds containing sulphur Selected Groups: BackBone GH3 CH2 CH CACH AC ACCH3	Azeotrope/Miscibility Calculations Biodegradation Calculations Temperature depd. props. Mixture Properties General Problem Control Non temperature depd. props. ProPred properties Min: Max: Molecular Weight (g/mol): 0 0
ACCH2 ACCH X	Note: at this stage specification of any other property is not necessary

Step 2: Run ProCamd to generate the backbone alternatives. Note that for the backbone generation, "isomer" generation is not allowed. For the problem formulated in step 1, the following result is obtained.

Summary :	×
Number of compounds designed : 2907 Number of compounds selected : 268 fotal time used to design : 0.02 s	Ā
Screened Out' Statistics for Primary Calculations : Functional group screening : 2639 of 2907	
	-

Compound 221 :

De	scription :
No	Groupname
3	СНЗ
1	СН
4	ACH
1	ACCH2
1	ACCH
1	×

Properties :		
Property	Value	Unit
Molecular weight	161.26	g/mol

X indicates a free attachment

Step 3: Click on ProPred to transfer the backbone structure. Propred draws the structure and calculates all properties, as shown below.

	ig pages		imates throug	ording gh each
Property	Method	Unit	Est.Value	Exp.V
Tm	MG	K	167.89	NZA
ТЬ	MG	K	473.15	N⁄A
Гс	MG	K	674.34	N⁄A
Po	MG	bar	24.56	N⁄A
Ve	MG	cm³∕mol	585.33	N⁄A
Ze	MG		0.256	N⁄A
Gf[298K]	MG	kJ/mol	152.06	NZA
Hf[298K]	MG	kJ/mol	-53.68	NZA
omega	CG		0.388	N/A
Hv[298K]	MG	kJ/mol	60.97	N/A
Ну[ТЪ]	MG	kJ/mol	42.82	NZA
Hfus	MG	kJ/mol	8.94	NZA
Sfus	MG	J∕(mol*K)	53.23	N/A
Vm[298K]	MG	cm ³ /mol	184.18	N/A
Vm[Tb]	MG	cm ³ /mol	226.51	N/A
Sol. Par. [298K]	MG	MPa ¹ / ₂	17.82	N/A
Refractive Index	MG	111 0.71	1.49	N/A
Molar Refraction	MG		53.54	N/A
Surf.Tens.[298K]	MG	dyn/cm	30.84	N/A
G.T. Temp.	CG	K	290.24	N/A
Log(Kow)	MG	v	4.00	N/A
	MG	T = = (= - (T)	1.86	N/A
Log(Vs)		Log(mg/L)		
Closed Flash Temp.		K	333.31	N/A
Open Flash Temp	CG	K	368.44	N/A
Hansen Disp. sol.	CG	MPa½	16.88	N⁄A
Hansen Polar sol.	CG	MPa½	0.86	NZA
Hansen Hydr. sol.	CG	MPa½	1.41	NZA
Dipolar moment	CG	debye	0.31	N⁄A
Dielectric const.	CG		4.72	NZA
Henry[298K]	CG	bar*m³/mol	0.041	N/A

Step 4: Launch ProCamd from ProPred from the "tools" menu

A new ProCamd application is opened. ProPred sends back the same backbone structure that ProCamd generated.

Step 5: Complete the backbone termination problem with ProCamd.

CAPEC	
Azeotrope/Miscibility Calculations Biodegradation Calculations Temperature depd. props. Mixture Properties General Problem Control Non temperature depd. props. Problem Title: Title Title Generate: © Acyclic Compounds Image: Generate Isomers © Cyclic Compounds Autoslack in initial generation: Cyclic Compounds 10%	Extended Problem Control Minimum number of groups: 2 Maximum number of groups: 3 Minimum number of 'functional'' groups: 0 Maximum number of 'functional'' groups: 2 Minimum number of same ''functional'' group: 0 Minimum number of same ''functional'' group: 0
Preselection Image: Generate Alcohols Image: Generate Esters Image: Generate Extens Image: Generate Ethers Image: Generate Addehydes Image: Generate Amines Image: Generate Acids Image: Generate Amines Image: Generate Acids Image: Generate Amines Image: Generate Amines Image: Generate Amines	Maximum number of same "functional" group: 2:
Generate Compounds containing fluorine Generate Compounds containing chlorine Generate Compounds containing bromine Generate Compounds containing sulphur Selected Groups: CH3 CH2 CH C CH2=CH CH=CH CH2CC CH=C CH2 CH CH3CD CH2CD CH0 CH3CD CH2CDO HC0D0 CH3D CH2D CH3D Generate Change Chan	Azeotrope/Miscibility Calculations Biodegradation Calculations Temperature depd. props. Mixture Properties General Problem Control Non temperature depd. props. ProPred properties Min: Max: Goal: Molecular Weight (g/mol): 200 0 0 Normal Boiling Point (K): 450 0 0
CH2NH CHNH CH3N CH2N COOH CHC CC DMF-2 COO	

ProCamd generates 74 terminated structures out of which compound 1 is Ibuprofen

Compound 1 :

Summary :	×
Number of compounds designed : 402 Number of compounds selected : 91 Number of isomers designed : 91 Number of isomer selected : 74 Total time used to design : 0.09 s	^
The group : DMF-2 was not used for design because of missing data for : Normal Melting point The group : CDNHCH3 was not used for design because of missing data for : Normal Boiling point	•
4	Þ

	х он
Des	scription :
No	Groupname
3	СНЗ
1	СН
4	ACH
1	ACCH2
1	ACCH
1	COOH

Properties :			
Property	Value	2. Value	Unit
			к
Normal Boiling point	573.09	573.09	K
Molecular weight	206.27	206.27	g/mol

3.5 Design of Large Molecules

Design a large molecule having the following properties,

 $M_w > 300$ $T_b > 400 \text{ K}$ $T_m > 300 \text{ K}$

Solve the problem with ProCamd and then switch to ProPred and further investigate the properties of the large molecule, including further increase of the size of the molecule. Only the "general problem control" and the "non-temperature depd props" need to be specified. In the "general problem control", select the following,

Generate: C Acyclic Compounds C Acyclic Compounds C Aromatic Compounds C Cyclic	Extended Problem Control Minimum number of groups: Maximum number of groups: Minimum number of "functional" groups:
Preselection Generate Alcohols Generate Esters Generate Ketones Generate Ethers Generate Aldehydes Generate Amines Generate Acids Generate Amides Generate Phenols Generate Compounds containing silicon Generate Compounds containing double bonds	Maximum number of "functional" groups: Minimum number of same "functional" group: Maximum number of same "functional" group: I Perform Database search after generation

Repeat the problem for acyclic compounds and cyclic compounds

3.6 Refrigerant Design

A refrigerant needs to have the following properties: Vapor pressure as a function of temperature (> 0.15 atm at 272 K & < 15 atm 315 K), Heat of vaporization (< 24 kJ/mole) at 298 K, Heat capacity (< 134 kJ/mole K).

2 ÷ 30 ÷ 0 ÷ 2 ÷ 2 ÷

In addition, use ProCamd to generate the candidates and then use ProPred to verify the selection. Generate the P-H thermodynamic diagram through ProPred to validate the refrigeration cycle.

Related problem: Design of heat pump fluid.

Appendix A: CAPEC Database Manager

In this section the use of the Database Manager is briefly discussed.

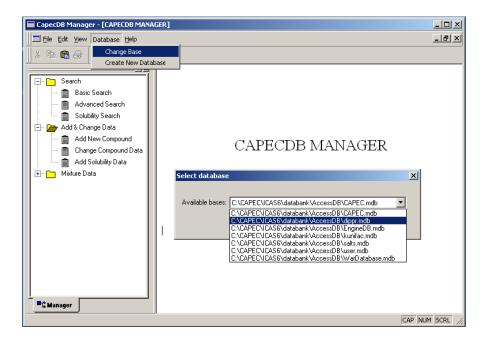
Click on the "Database Manager" icon M in the task bar of ICAS main window.

A1. Basic Search

Under the "Search" directory in the left panel you will find different options to perform the search of a compound. Select "Basic Search" \rightarrow Type the name of your component \rightarrow Click on "Search CapecDB" \rightarrow Select your component from the displayed list \rightarrow Click on "View Compound".

n n #					
Search Basic Search Advanced Search Solubility Search	Search by: Name Formula Cas-number	Type the Search Benzene	sting		ch CapecDB
Add & Change Data	Found Compounds:				
- Change Compound Data	Casno	Chemname	Smiles	Formula	-
	000060-09-3	p-AMINOAZOBENZENE	N(+Nc(cccc1)c1)c(ccc)		
Add Solubility Data	▶ 000071-43-2	Denzene	0(00001)01	CEHS	
Moture Data	000087-68-1	1,2,3-BENZENETRICL	Oc(c(0)ccc1)c10	C6H603	
- 11	000088-73-3	o-CHLORONITROBENZENE	O=N(=O)c(c(ccc1)Cl)c1		
	000095-50-1	Benzene,1,2-dichioro-	c(c(ccc1)Cl)(c1)Cl	C6H4CI2	
	000095-63-6	1,2,4-TRIMETHYLBENZENE	c(ccc(c1C)C)(c1)C	C9H12	
	000095-93-2	1,2,4,5-TETRAMETHYLBENZENE	c(c(cc(c1C)C)C)(c1)C		
	000097-00-7	1-CHLORO-2,4-DINTROBENZENE	O=N(=O)c(ccc(c1N(=O)		
	000098-06-6	tert-BUTYLBENZENE	c(cccc1)(c1)C(C)(C)C		
	000098-11-3	BENZENESULFONIC-ACID	O=S(=O)(O)c(cccc1)c1		
	000098-49-7	p-DISOPROPYLBENZENE-HYDROPERO			
	000098-95-3	NTROBENZENE		C6H5N02	
	000099-35-4	1,3,5-TRINTROBENZENE	O=N(=O)c(cc(N(=O)=O)	C6H3N3O6	
	000099-54-7	1,2-DICHLORO-4-NITROBENZENE	O=N(=O)c(ccc(c1Cl)Cl)	C6H3CI2NO2	
	000099-62-7	m-DISOPROPYLBENZENE	c(cccc1C(C)C)(c1)C(C)	C12H18	
	000099-65-0	m-DINTROBENZENE	O=N(=O)c(cccc1N(=O)		
	000100-00-5	p-CHLORONITROBENZENE	O=N(=O)c(ccc(c1)Cl)c1	C6H4CINO2	
	000100-18-5	p-DISOPROPYLBENZENE	c(ccc(c1)C(C)C)(c1)C(C12H18	
	000100-25-4	p-DINITROBENZENE	O=N(=O)c(ccc(N(=O)=		-1
	H Record 2			COLMO 1	- DČ
	Necora 2				

The Property pages will be displayed. Here you can find from Antoine Constants, Critical properties, property temperature dependent correlations, solvent properties and Group description. Click on "Back" button to return to the initial page.

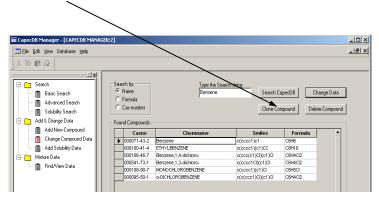


CapecDB Manager - [CAPECDB MANAGER	::3]				×
Elle Edit View Database Help					_ 면 즈
Search Basic Search Advanced Search Solubility Search	Properties Page 1.	View Properties Page 2. Properties Page		ake Report Back	
Add & Change Data Add New Compound	Mw (g/mol):	78.114	igS [kJ/[kmol*K]]:	269.3	
Change Compound Data	Omega	0.21	RG (Å):	3.004	
Add Solubility Data	Tc (K):	962.16	DM (Debye):	0	_
Moture Data	Pc (atm):	48.339	Solpar ([MPa]^.5]:	18.7296	
	Vc (m3/kmol):	0.259	VDW/ Vol (m3/kmol):	0.0484	
	Zc:	0.271	VDW Area (m2/kmol):	60000000	_
	Tm (K):	278.68	HFusion (kJ/kmol):	9866	_
	Tb (K):	353.24	HCombust (kJ/kmol):	-3136000	
	Ttr (K):	278.68	Rt	1.49792	
	Ptr (atm):	0.0469973	FPoint (K):	262	
	Vliq (m3/kmol):	0.0094039	FPI (vol %):	1.4	
	igHF (kJ/kmol):	82990	FPu (vol %):	2.1	
	igGF(kJ/kmol):	129600	AIT (K):	835	
Bit Manager 4					L PÉ

A2. Add and Change of Data

Data can be changed only on the user-database. Go to the user-database where your compound exists (Database → Change to any of the user-databases)

- 2. Change of Data:
- \checkmark Go to "Change compound data" on the left panel.
- ✓ Type your component in the box → click on "Search CapecDB" → Select it.
- ✓ Click on the "Change Data" button


CapecDB Manager - [CAPECDB MANAGE	ER:2]				
Eile Edit Yiew Database Help			~		
X h 🛢 🖨					
Basic Search	C Formula				
Solubility Search Add & Change Data Add New Compound B Add New Compound B Change Compound Data	C Cas-number	Chemname	Clone Co Smiles	Formula	e Compound

 ✓ Change the desired information in the corresponding fields.
 Once you finished click on "Add/Update Data" button. An updating message will appear.

Bie Edit View Database Help	
· · · · · · · · · · · · · · · · · · ·	
🖃 🛅 Search	Add/Update D ata
- Basic Search - Advanced Search	Properties Page 1. Properties Page 2. Properties Page 3. Solvent Properties Page. Group Description.
- Solubility Search	
Add & Change Data	
- Chaper Corpound Data	Surrown 1 ANILINE
Add Solubility Data	LapecDil Manager X
Add Solubility Data	Synonym 2 Capecold Manlager X
Add Solubility Data	LapecDil Manager X
Add Solubility Data	Synonym 2 Capecold Manlager X

- 3. Clone of a Compound
- ✓ Go to "Change compound data" on the left panel.
- ✓ Type your component in the box \rightarrow click on "Search CapecDB" \rightarrow Select it.
- ✓ Click on "Clone Compound".

✓ If you change some information do it in the corresponding fields. Once you finished click on "Add/Update Data" button.

✓ Give a name in the "New Name" window → Click on "Ok",

CapecDB Manager - [CAPECDB MANAG	ER:3]	
📗 🗖 Eile Edit View Database Help		
X h c g		
Search Basic Search Advanced Search Advanced Search Add Rc Change Data Add New Compound Change Compound Data	Properties Page 1. Properties Page 2 Properties Page 3.	Add/Update Data Solvent Properties Page. Group Description.
Add Solubility Data	Synonym 1: ANILINE	
🖃 🦳 Mixture Data	Synonym 2: New Name	X
Find/View Data	Synonym 3:	
	Matrias CC1 Enter Name for cloned compound: Matrias CC2 Antinel Matrias CC3 OK Antoine A: 7.46441	

✓ Allocate the cloned component in a database (only to the "user" database"),

CapecDB Manager - [CAPECDB MANA	GER:3]
Eile Edit View Database Help	
X D B G	
Search Advanced Search Find/View Data Find/View Data	Add/Update Data Properties Page 1. Properties Page 2. Properties Page 3. Solvent Properties Page. Group Description. Syrrorym 1: ANILINE S Select target database C.CAPECULASSI/databark/Access/DB/CAPEC.mdb C.CAPECULASSI/databark/Access/DB/CA

✓ Now there is a new compound in the selected database!

A3. How to Estimate Properties of a Chemical Product Not Found in the Database?

- > Launch the CAPEC database and then select the user-database.
- Click on "add/change" data
- Click on ProPred
- In ProPred, either draw the molecule or import the SMILES or import the mol.file corresponding to the chemical product. The database in ProPred can also be searched, if necessary.
- Check if all the necessary properties have been estimated by ProPred, if yes, exit from ProPred.
- Click on "update" data

Try the following exercise:

Try to put Morphine (Oc1ccc2CC3N(C)CCC45C3C=CC(O)C4Oc1c25) into the userdatabase. CAS number of morphine is 000057-27-2 (the database in ProPred has this compound).

APPENDIX B. Manual for SLE

B1. Use of Utility Toolbox

B1.1. Compound selection & property model selection

I. Draw a stream and then select compounds by clicking on the "compounds" button.

	2 🎾 🏏	≝ 🕫 📴 🖾		- 🗳 🏄 🕈	9 🧐 🖂 🕅	4 OPT	
🗅 🛋 🖬 🐰 🖻 🎕 🔜 🔤 🛰 🚥 🛰 🗖	ompound	Selector					×
편 ICASI	Search C Search S Name	tring: phenol	dip Ple	ailable Tables — pr.mdb ase select the d npounds from	latabase to get t	▼ the	OK Cancel
	Available	Compounds					To include a compound in this
		Name		Formula	Cas. No		problem, select it in the avaliable
6	335	p-tert-BUTYLPHENOL		C10H14O	000098-54-4	1	compound list (click in the first column) and click 'Add'
		p-ETHYLPHENOL		C8H10O	000123-07-9		· · · · · · · · · · · · · · · · · · ·
		p-CUMYLPHENOL		C15H16O	000599-64-4		Add
		m-CHLOROPHENOL		C6H5CIO	000108-43-0		
		p-tert-OCTYLPHENOL		C14H22O	000140-66-9		To inspect the properties of a
		NONYLPHENOL		C15H24O	025154-52-3		compound, select the
		p-tert-AMYLPHENOL		C11H16O	000080-46-6		compound of interest and click View
		0-CHLOROPHENOL		C6H5CIO	000095-57-8		VIEW
		p-CHLOROPHENOL		C6H5CIO	000106-48-9		View
•		DINONYLPHENOL		C24H42O	001323-65-5		
	1481	Phenol		C6H6O	000108-95-2		
	- Selected	Compounds					To remove a compound from
		Name	Formula	Cas. No	Database		this problem, select it in the
	1	Benzene	C6H6	000071-43-2	CAPEC		selected compound list (click in the first column) and click
	2	Phenol	C6H6O	000108-95-2	CAPEC		'Remove'
							Remove

II. Double click on the stream to enter the "mixture specification" window

101CAS - ICAS1	×
File Edit View Draw Format Def.Prob. Toolboxes Simulation Window Help	
d ICAS1 _□×	
Mixture Specification - D:\CAPEC\ICAS\work\ICAS1.in	×
🛃 🖚 🛲 🔞	
From Connection Suroundings From Connection Suroundings	Cancel
To Connection Suroundings Use Boundaries Divider Factors Esplicit variables	Default
	nown Init Plot
Temperature (K) 300 × Enthaloy Flow (K) 0	
Pressure (arm) 1 ×	
Density (kmole/m^3) 0	×
Benzene (kmole/hr) 1 ×	
TOTAL FLOw (kmole/hr) 0	
If the total flow is specified the other will be normalized to molefactions. View Calculated Resu	dis.
Ready	
#Start 7 @ * O * Q1\Loa., @Eudor., Wunkit., Q1D:\M., Q1C:\Pr., @]Docu., @]ICAS., [7] (ICAS - ICAS)	et N 🐼 🖉 🏹 🖍 🕲 🏹 🛛 11:04 AM

III. After specifying the temperature, pressure and component flows (as shown above) click on the top-left button to enter the "property" window. Click on the top-left button to go to the "property model" selection window.

🚔 Property - D:\CAPEC\ICAS\w	ork\ICAS1.in	
≝₫⊗≵®⊻		
Stream Number 1	Select components to include in the calculations: Benzene Phenol	Properties to calculate
	What to plot: Plot Type: No Plot	PS-Flash S = 0 Bubble Point Temperature Dew Point Temperature
Incorporate remaining	1-акіз 2-акіз	Bubble Point Pressure Dew Point Pressure Fugacity
components as fixed components Show precipitation lines	3-axis	Activity Coefficient Fugacity Check Intensive Properties
🔲 Known Pressure	Multiple Curves Only One Curve	Solubility Products
	Multiple mixture points - independent component No Component Multiple mixture points - dependent component	PH-values Reactive Bubble Point Temp. Reactive Dew Point Temp.
Note: Perform the property calculation by pressing Run on the toolbar	No Component	Separation efficiency curves
Reset All Reset Axis	Temperature (K) 300 0 0 Pressure (atm) 1 0 0	Organic SLE
Back Cancel	- 0 10 1 Independent Comp. (kmole) 0 100 10	Pure compound correlations
Ready		

IV. Click on the "gamma-phi" option for this example

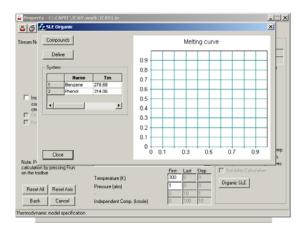
Selection of Thermodynamic Model - D:\CAPEC\ICAS	\work\ICAS1.in
	Use multi-phase flash (more than 2 phases)
Phase Equilibrium Model	
Gamma-Phi Select the gamma-phi approach (I	Different thermodynamic models for each phase)
Phi-Phi Select the phi-phi approach (Sam	e thermodynamic model for all phases)
Selected GE-Model No Ge-model selected	
Selected EOS-Model Soave-Redlich-Kwong	
Saturated Vapor Pressure Correlation	Heat of vaporization model
Select Dippr Correlation 101	DIPPR-106 correlation (DIPPR-106)
Enthalpy model	, Density/Volume model
DIPPR-107 IdGas correlation (Hig) DIPPR-107 IdGas correlation + Hr from EOS (Hig+Hr) DIPPR-100/114 IdLiq correlation (Hid)	IdGas correlation + DIPPR-105 IdLiq correlation (IdGas+IdLiq) Density from EOS for both vapour and liquid (EOS)
Ready	
liveant	

V. Click on the "select liquid phase model"

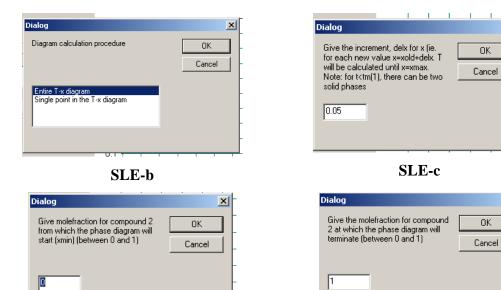
Gamma-Phi Setup	X
Please go through the following 4 steps	to setup your gamma-phi model
Select Liquid Phase Model ->	Ideal Solution
Select Vapor Phase Model ->	Ideal Gas
Select Sat. Vapor Pressure correlation ->	Dippr Correlation 101
Include Poyting Correction ->	
Cancel	OK

VI. Select the UNIFAC model as shown below. The UNIFAC model parameters are shown and if all parameters are available (as in this example), click OK

GE Menu		×					
Select GE-model :	Org. UNIFAC VLE 1par Tedel Solution Margules RedichKitter Sochadd Hamer	OK Relax OK Cancel	GE Menu				
Model Parameters Aij [K] 3. 'ACH' 8. 'ACOH'	Van Laar – – – – – – – – – – – – – – – – – –		Select GE-model :	Org. UNIFAC VLE 1	par	V	OK Relax OK Cancel
	Org. UNIQUAC Mod. UNIQUAC Org. UNIFAC VLE 1par Org. UNIFAC VLE 1par Org. UNIFAC VLE 2par		Model Parameters	Pure Properties	Compound Des	cription	
	Mod. UNIFAC Lyngby 3par		Aij [K]	3. 'ACH'	8. 'ACOH'		
	Gas UNIFAC (gas solubility) UNIFAC 2 par (new group table)		3. 'ACH'	0	1329		
	User UNIFAC model		8. 'ACOH'	25.34	0		
	View UNIFAC parameter table						
The selected databas	e is : C:\CAPEC\CAS\databank\AccessDB\ Save Par	ameters to Database					


VII. On return to the main property model selection window click on default to select all the other model options (as shown below) and click OK.

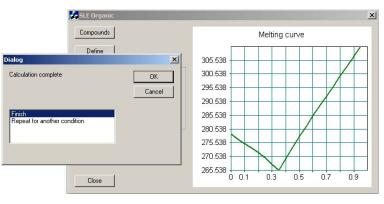
😸 Selection of Thermodynamic Model - D:\CAPEC\ICAS\work\ICAS1.in							
F	Use multi-phase flash (more than 2 phases)						
Phase Equilibrium Model							
Gamma-Phi Select the gamma-phi approach (Diff	erent thermodynamic models for each phase)						
Phi-Phi Select the phi-phi approach (Same th	rermodynamic model for all phases)						
Selected GE-Model Org. UNIFAC VLE 1 par							
Selected EDS-Model Ideal Gas							
Saturated Vapor Pressure Correlation	Heat of vaporization model DIPPR-106 correlation (DIPPR-106)						
Select Dippr Correlation 101	DIPPR-106 correlation (DIPPR-106)						
Enthalpy model	J Densitv∕Volume model						
DIPPR-100/114 IdLig correlation (Hid)	IdGas correlation + DIPPR-105 IdLig correlation (IdGas+IdLig)						
DIPPR-107 IdGas correlation (Hig) DIPPR-107 IdGas correlation + Hr from EOS (Hig+Hr) DIPPR-100/114 IdLiq correlation (Hid)	IdGas correlation + DIPPR-105 IdLiq correlation (IdGas+IdLiq)						
Ready							



B1.2 Utility calculation option (SLE)

I. On return to the Property "Utility" window, select the option(s) of choice for calculations. For this example, select the "SLE" option and follow the screens SLE-a to SLE-f.

SLE-a


SLE-d

×

×

SLE-f

B2. LLE Phase Diagram

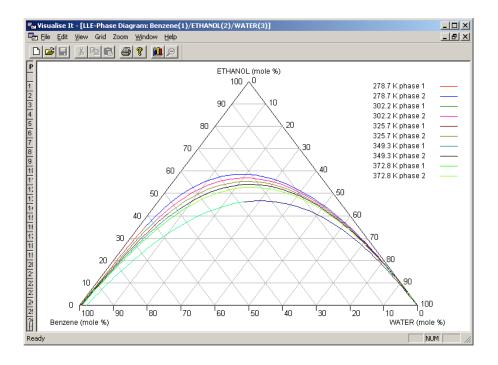
The mixture is changed to water-ethanol-benzene. The UNIFAC-LLE model is chosen and the LLE-phase diagram option is called from the ICAS-utility toolbox, as shown below.

🞍 Property - C:\CAPEC\ICAS\we	ork\ICA51.in		
≝₫:10111;1011;1011;1011;1011;1011;1011;10			
Stream Number 1	Select components to include in the ETHANOL WATER Benzene	calculations:	Properties to calculate PT-Flash PH-Flash PS-Flash S =
	What to plot: No Plot 1-axis	Plot Type:	Bubble Point Temperature Dew Point Temperature
Incorporate remaining	2-axis	V	Bubble Point Pressure Dew Point Pressure Fugacity
components as fixed components Show precipitation lines	3-axis		Activity Coefficient Fugacity Check
Known Pressure	 Multiple Curves Only One Curve	<u></u>	Intensive Properties Solubility Products Solubility indices
	Multiple mixture points - independer No Component	nt component	PH-values Reactive Bubble Point Temp.
Note: Perform the property calculation by pressing Run	Multiple mixture points - dependent No Component	•	Reactive Dew Point Temp. Separation efficiency curves Solubility Calculation
on the toolbar	Temperature (K) Pressure (atm)	First Last Step 300 0 0 1 0 0	Organic SLE Organic LLE
Reset All Reset Axis Back Cancel	- Independent Comp. (kmole)	0 10 1 0 100 10	Pure compound correlations
Ready			

• From the "property" menu, click on "organic LLE" to enter the LLE tool-box:

ICAS 6.0 - ICAS1				_ 8 ×
File Edit View Draw Eormat Def.Prob. To	iboxes Simulation Window Help		/	
	▯▯๏๖೫๕๚฿฿฿฿	- 3 1 1 2 2	C SIN OFT	
□≥≥₽₽ %₽® ±*	🏧 🞾 🕰 🎎 🚣 🖉 🗳 🖬 📶 🏦 P2 PA 🛅			
	erty - C:\CAPEC\ICAS\work\ICAS1.in			
<u> </u>	I 🕲 🗼 🕑 🗹			
Stream	Number 1 Select component to include in th	e calculations:	Properties to calculate	
	WATER		PH-Flash H = 0	
-		DINT	□ PS-Flash S = 0	
	What to plot: No Plot	Plot Type:	Bubble Point Temperature Dew Point Temperature	
1			Bubble Point Pressure	
💑 LLE Organic		×	E dew Point Pressure	
Compounds	System		Funacity Activity Coefficient	
Name Tm (K) ETHANOL 159.05	To (K) To (K) comp#1. ETHANOL 51.44.512.00 comp#2. WATER		Fugacity Check	
	73.15 647.13		Intensive Properties Solubility Products	
Benzene 278.68	53.24 562.16		Solubility indices	
1			PH-values	
	Add to System Remove from System	n Up Down	Reactive Bubble Point Temp. Reactive Dew Point Temp.	
	Note: If ternary, comp#1 and comp#3 must be a pa	artially miscible pair	Separation efficiency curves	
Initial values for concer	trations (mole percent). May be zero except for highly unsymmetric	systems	Solubility Calculation	
Concentration of comp	3 in phase 1 Concentration of comp#1 in pha	se 2 0	Organic SLE Organic LLE	
			Pure compound correlations	
			µ	
	Calculate&Plot	Close		
				lass lass lass
For Help, press F1	Steady State Unit.	In DynSim, this is considere	s a line mixer	CAP NUM SCRL

• From the "LLE organic" window, click on "Calculate & Plot" to enter the "Plot Ternary LLE Curves"


Plot Ternary LLE Curves	x
Ternary diagram can include up to six different LLE curves, each at a different temperature. Enter below the temperature values (in Kelvin) for each isotherm ternary LLE curve. Values must be within a range in which all components can exist as liquids.	
Isotherm # 1: 278.68 Isotherm # 2: 302.204 Isotherm # 3: 325.728	
Isotherm # 4: 349.252 Isotherm # 5: 372.776 Isotherm # 6: 513.92	
Step length in the binodal (ternary) curve construction, in mole percent (1 <step<5)< td=""><td></td></step<5)<>	
2	
Cancel	

• Click in OK in order to calculate a ternary LLE phase diagram:

Itame Tm (K) Tb (K) Tc (K) System ETHANOL 159.05 351.44 513.92 comp#2. ETHANO WATER 273.15 647.13 emp#3. WATER Benzene 278.68 353.24 562.16 emp#3. WATER Note: If temary, comp#1 and comp#3 must be a p itial values for concentrations (mole percent). May be zero except for highly unsymmetric	THANOL /ATER	2 3	513.92 647.13	351.44 373.15	159.05 273.15	Name THANOL VATER
Note: If ternary, comp#1 and comp#3 must be a p	m System Up Down					Benzene
" vitial values for concentrations (mole percent). May be zero excent for highly unsummetric	t be a partially miscible pair	No				
and values for concentrations (more percent). They be zero except for highly unsymmetric	ymmetric systems	e per	s (mole p	ntration	or conce	al values fo
oncentration of comp#3 in phase 1 Concentration of comp#1 in pha	t1 in phase 2 0	0	hase 1	#3 in pł	of comp	centration

• The calculated LLE phase diagram is shown:

Appendix C: Additional exercises

Conceptual problem (for solving without any software)

For the groups listed in the table below and using the corresponding rules for joining them, determine,

- ✓ How many 4 group structures are there if no other rules are considered? That is, find in how many ways, the 7 groups in the Table can be joined in structures containing only 4 groups?
- ✓ How many structures can you generate when in addition to having 4 groups, the following rule is also satisfied –

The number of free attachments is zero

- ✓ How many structures can you find when groups of category 2-5 can appear only once? How many of these structures are chemically feasible or can be found in the database?
- ✓ How many of the structures satisfy the criteria of 345 K < T_b < 355 K

Groups Table

Class			Category		
	1	2	3	4	5
1	CH3	CH2NO2	СНЗСО	он	CH2=CH
2	CH2				
3	СН				

Class Number: Defines the number of free attachments

-CH3; -CH2-; -CH-; -C-

Category Number: Defines degree of restriction to joining with other groups. Examples -

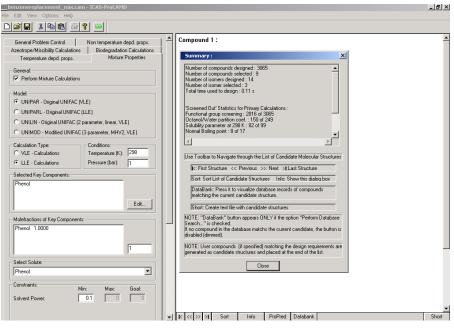
1: no restrictions; 2-4: cannot join with each other; 5: only one per molecule of specified size

Group Contributions for normal boiling point (T_b)

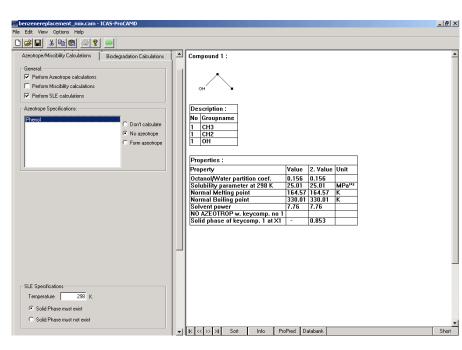
CH3	0.8894
CH2	0.9225
СН	0.6033
CH2NO2	5.7619
CH3CO	3.5668
OH	3.2152
CH2=CH	1.7827

 $Exp(T_b/T_{b0}) = \Sigma_i N_i C_i$

Where $T_{b0} = 204.359$ K, N_i is the number of times group i is present in the molecule, C_i is the contribution of the group property.


Compound substitution problem

Find all cyclic organic molecules with C, H & O atoms that have the same T_b , Hildebrand Solubility parameter, T_m as that of benzene but not the EH&S properties of benzene (Achenie et al. 2003, page 161)


Screen shots from ProCamd

Temperature depd. props.		Mixture	Properties
Azeotrope/Miscibility Calculation	ons	Biodegradatio	on Calculations
General Problem Control	Non	temperature	depd. props.
	Min:	Max:	Goal:
Normal Boiling Point (K):	323	373	353.2
Normal Melting Point (K):	0	314	0
Total Solubility, Param. (MPa ¹⁹):	22	26	24.6
LogP (Octanol/Water):	1.5	2.5	2.13

-a-

-b-

-c-

Find all compounds that match the following property constraints

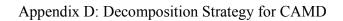
CAPEC

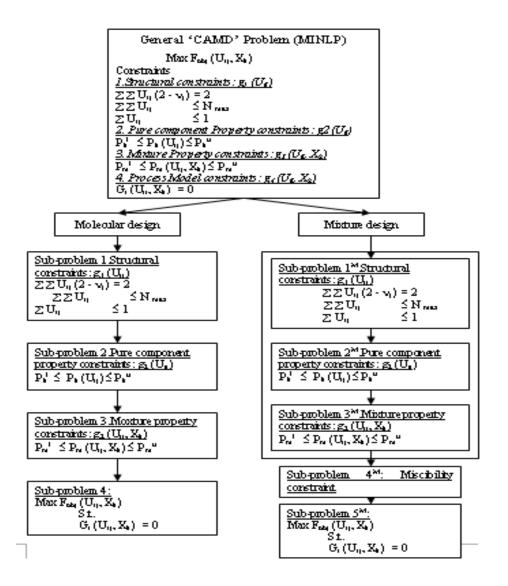
475 K < normal boiling point < 525 K; 325 K < normal melting point < 375 K -250 kJ/mol < heat of formation at 298 K < - 220 kJ/mol

-0.75 < Log P < -0.50 ; 4.0 < log water solubility (log mg/L) < 5.5

Untitled - ICAS-ProCAMD	_	. 🗗 🗡
File Edit View Options Help		
Azeotrope/Miscibility Calculations Biodegradation Calculations Temperature depd. props. Mixture Properties General Problem Control Non temperature depd. props.		•
Min: Max: Goal: Normal Boiling Point (K): 475 525 0 Normal Metting Point (K): 325 375 0 Enthalpy of Form. (kJ/mol): -1000 -220 0 Log(Water Solubility) (log(mg/l)): 4 -0.5 0	Description :	
LogP (Dotanol/Water): 4 5.5 Summary: X Number of compounds designed : 4497 Number of somers designed : 15 Number of isomers designed : 170 Number of isomers designed : 170 Total time used to design : 0.26 s The group : HCO0 was not used for design because of missing data for : Solubility parameter at 238 K Soreened Out' Statistics for Primary Calculations :	No Groupname 2 CH3 1 CH2 1 CH 1 CH-0 1 CH-0 1 COH 2 Order description : No Groupname	
Log(Water solubility) at 298 K : 4335 of 4497	1 CHCHO or CCHO Properties : Property Value 2. Value Unit Octanol/Water partition coef. 0.972 0.972	
It: First Structure <<: Previous >>: Next >>Last Structure Sort: Sort List of Candidate Structures Info: Show this dialog box DataBank: Press it to visualize database records of compounds matching the current candidate structure.	Log(Water solubility) at 298 K -1.15 -10g(mg/l) Enthalpy of Formation -760.48 -762.57 kl/mol Normal Melting point 317.06 326.17 K Normal Boiling point 526.46 524.79 K	
Short: Create text file with candidate structures NOTE: "DataBank" button appears ONLY if the option "Perform Database Search" is checked. If no compound in the database matchs the current candidate, the button is disabled (dimmed).	IK << >> >I Sort Info ProPred Databank 5	▼ Short
NOTE: User compounds (if specified) matching the design requirements are generated as candidate structures and placed at the end of the list.		

Case Study: Anthraquinone recovery - Solvent selection problem statement (Achenie et al. 2003, page 236-242)


Based on the processing constraints, the following desired properties for the solvent are needed.


- **1.** Anthracene has to be soluble in the solvent at 145°C. The solubility is approximately 0.27 by mass fraction in the existing solvent at the reaction temperature. So ideally we prefer the new solvent to have solubility greater than that.
- **2.** Recovery of Anthraquinone, the product, from the solvent. Ideally prefer to achieve greater recovery of the product than in the current solvent. Also need to ensure that no eutetic is formed when the product is crystallised.
- **3.** Solubility of Nitric Acid in the solvent needs to be high in order for the instantaneous reaction between the Nitric Acid and Anthracene to take place.
- **4.** Reactivity of the solvent with Nitric Acid, Anthracene and Anthraquinone will need to be known. The solvent in this case is simply a reactant carrier and does not appear in the reaction mechanism. Therefore the solvent should not participate in the reaction.
- **5.** Solvent used needs to be immiscible with water. The process is designed to treat such solvents. Therefore the solvent chosen should form an azeotrope with water, where the liquid splits into two liquid phases with different compositions.
- **6.** The chosen solvent should have a minimum boiling point of 145°C because the reaction temperature is 145°C. At this temperature the solvent should be a liquid for liquid phase reaction.
- 7. The chosen solvent should have a maximum melting point of 25°C because the product is crystallised at 25°C. This will minimise the chance of solvent to be crystallised out with the product.
- **8.** The solvent will be released to the environment via the effluent stream and via vents. Therefore we want a solvent, which is environmentally friendly.
- **9.** The solvent used should also be economically favourable. This factor should not be of a great concern as long as a majority of the solvent is being recovered. If the solvent used requires addition of make-up of fresh solvent feed for each batch of reaction, then the cost of the solvent would be a major criterion.

anthrquinone-example-page-236CAM.CAM - ICAS-ProCAMD		
File Edit View Options Help		
Azeotrope/Miscibility Calculations Biodegradation Calculations Temperature depd, props. Mitture Properties General Problem Control Non temperature depd, props. Mitri: Max. Goat 0 Normal Boiling Point (K): 0 Open Cup Flash Point (K): 350 Total Solubility. Param. (MPa*9): 15 LogP (Octanol/w/ater): 0	Compound 3 : Description : No Groupname 2 CH3 2 CH2 1 CH 1 CH3COO	×
Number of compounds designed: 18645 Number of compounds selected: 152 Total time used to design: 0.34 s The group: HCDO was not used for design because of missing data for: Enthalpy of Vaporization The group: CDO was not used for design because of missing data for: Enthalpy of Vaporization The group: CDO was not used for design because of missing data for: Use Toolbar to Navigate through the List of Candidate Molecular Structures: IK: First Structure <<<: Previous >>: Next >LLast Structure Stort: Sort List of Candidate Structures	Normal Melting point 202	9 MPa ¹² 4.81 K 2.41 K 1.43 K 00
Soft: Soft List of Landdate Structures Into: Show this dialog box DataBank: Press it to visualize database records of compounds matching the current candidate structure. Short: Create text file with candidate structures NOTE: "DataBank" button appears DNLY if the option "Perform Database Search"is checked. If no compound in the database matchs the current candidate, the button is disabled (dimmed). NOTE: User compounds (if specified) matching the design requirements are penerated as candidate structures and obsced at the end of the list.	Ik ≪ >> >I Sort Info ProPred Data	bank Shot

Solvent design problem formulation

$$Max PR\% = \frac{100}{1 - X_1} * \left(1 - \frac{X_1}{X_2}\right)$$
(11)

$$\sum_{j} \sum_{j} u_{ij} (2 - v_j) = 2$$
(12)

$$\sum_{i}\sum_{j}u_{ij} = N_{\max}.$$
(13)

$$\sum_{j} u_{ij} = 1 \tag{14}$$

$$17 \le \delta \le 19 \text{ MPA}^{1/2}$$
 (15)

$$\delta_R \ge 8$$
 MPA^{1/2} (16)

(17)

$$T_f = 3.63^* \sum_{i} \sum_{j} N_i T_{ji} + 0.409 * T_s + 8843 \ge 323 \text{ K}$$

$$-Log(LC_{so}) \le 3.3 \tag{18}$$

$$T_{\rm re} = 102.425^* \sum_{j} N_j T_{\rm re} + \sum_{j} M_j T_{\rm rej} \le 270 \text{ K}$$
 (19)

$$T_{a} = 204.359 * \sum_{i} N_{i}T_{a_{i}} + \sum_{j} M_{j}T_{a_{j}} \ge 340 \text{ K}$$
 (20)

$$\mu \le 1$$
 cp (21)

$$\ln x_i^{Sur} - \frac{\Delta_{fus} H}{T_{rs}} \left(1 - \frac{T_{rs}}{T}\right) + \ln \gamma_i^{Sur} = 0$$
(22)

$$x_1 + x_2 = 1$$
 (23)
260 $\le T \le 320$ (24)

Solvent-Antisolvent mixture design

$$\operatorname{Max} PR'_{*} = \frac{100}{1 - X_{*}} * \left(1 - \frac{X_{*}}{X_{*}} \left(1 + \frac{M_{*r}}{M_{*}} \right) \right)$$
(25)

Subjectto

$$\sum_{i} \sum_{j} u_{i} (2 - v_{j}) = 2$$
(26)

$$\sum_{i}\sum_{j}u_{i}=N_{-}.$$
(27)

$$\sum u_{r} = 1 \tag{28}$$

$$\Gamma_{\nu}(solven) = 102425 * \sum_{i} M_{i} \Gamma_{\nu_{i}} + \sum_{i} M_{i} \Gamma_{\nu_{i}} \leq 270 \quad \mathrm{K}$$

$$(29)$$

$$\Gamma(solvent) = 204359^* \sum NT_n + \sum M_n T_n \ge 340 \text{ K}$$
(30)

$$T_{r}(solvent) = 3.63^{\circ} \sum NT_{r} + 0.409^{\circ} T + 88432323 \text{ K}$$
(31)

$$17 \leq \mathcal{S}(solvent) \leq 19 MP A^{*1}$$
 (32)

$$\Gamma(anti-solven) = 204359* \sum N_{i}\Gamma_{i} + \sum M_{i}\Gamma_{i} \ge 340 \text{ K}$$
(33)

- $T_{e}(solven a) = 102425^{*} \sum_{i} N_{i} T_{e_{i}} + \sum_{i} M_{i} T_{e_{i}} \le 270 \text{ K}$ (34)
- $\Gamma_{i}(anti-solvent) = 3.63 * \sum_{i} N \Gamma_{i} + 0.409 * \Gamma_{i} + 8843 \ge 250 \text{ K}$ (35)

$$\frac{1}{x_s} + \frac{\partial \ln \gamma_s}{\partial x_s} \ge 0 \tag{37}$$

$$\ln x_{i}^{\pi n} - \frac{\Delta_{\mu\nu} H}{T_{\nu}} \left(1 - \frac{T_{\nu}}{T} \right) + \ln \gamma_{i}^{\pi n} = 0$$
(38)

$$x_i + x_s + x_i = 1$$
 (39)

Appendix E: Target property selection for solvent-based separation

Properties	,	Solvent Design								
-	L-L		Extra	ctive	Azeot	ropic	Solid		Gas	
	Extrac	etion	Distil	lation	Distil	lation	Separ	ration	Absor	rption
Pure	E	D	Е	D	E	D	E	D	E	D
δ	\checkmark	\checkmark	\checkmark	\checkmark	\neg	\checkmark		\checkmark		\checkmark
τ		\checkmark								\checkmark
μ		\checkmark								\checkmark
T _b	\checkmark		\checkmark		\neg		\checkmark		\checkmark	
T_	V		\checkmark		\checkmark		V			
ρ					1					
Pa			\checkmark							
H _{vap}				V		\checkmark				
Mixture	1 E	D	Ε	D	E	D	E	D	Ε	D
Selectivity		\checkmark		\checkmark		\checkmark		\checkmark	\checkmark	
SL		\checkmark				\checkmark			\checkmark	
SP		\checkmark		\checkmark		\checkmark	1		\checkmark	
DC		\checkmark		\checkmark		\checkmark				
Phase-split	\checkmark		\checkmark		\checkmark		V			
Azeotrope				\checkmark	\checkmark					
ρ _m	\checkmark									
μ	\checkmark									
Н										\checkmark

Table 2: List of important properties for some separation techniques

Note: E is Essential; D is Desirable; L-L is liquid-liquid; the definitions of property variables in column 1 are given in Nomenclature.

Table 3: List of properties for addressing EH&S considerations						
	Properties	Environmental Concern				
		Health	Safety	Environment		
Implicit	Toxicity	V		1		
	Biological			1		
	persistence			Y I		
	Chemical stability	\checkmark	1			
	Reactivity		V			
Explicit	Biodegradability		V	1		
	P _v	1	V	1		
	H (in water)			1		
	Log P	V		1		
	Log W _s	1		1		
	Flash point		1			
	BOD			1		
	ρ (vapor)	V	1			
	Evaporation rate	1	1	1		
	LD50	V		1		
	ODP			1		

Table 3: List of properties for addressing EH&S considerations

÷	Ebaluation of Primary S	olvent Properties for Liquid Extraction

Property (mass basis)	Estimate
Solvent Selectivity	$\beta = \frac{\gamma_{B,S}^{\infty} M W_A}{\gamma_{A,S}^{\infty} M W_B}$
Solvent Power	$S_{P} = \frac{MW_{A}}{\gamma_{A,S}^{\infty} MW_{B}}$
Solute Distribution Coefficient	$m = \frac{\gamma_{A,B}^{\infty}}{\gamma_{A,S}^{\infty}} \frac{MW_B}{MW_S}$
Solvent Loss	$Sl = rac{1}{\gamma^{\infty}_{S,B}} rac{MW_S}{MW_B}$