Lecture 7 : Sizing, Costing & Economic Evaluation

Chapters 4 & 5 (Textbook)

Ethanol Process: Design Problem (from Textbook)

FIGURE 3.1 Ethanol flowsheet.

We have now performed mass and energy balance.

We have added pumps/compressors, heat exchangers wherever necessary.

Now we need to do the sizing calculations for all unit operations in the flowhseet.

Costing & Economic analysis

Sizing & Costing Calculations (chapter 4) plus Economic Analysis (chapter 5)

•Data collection & design problem definition •Flowsheet (tasks 1-3) •Mass balance (task 4) •Mass & energy balance (simple) – tasks 5-6 •Mass & energy balance (detailed) – task 7 Sizing calculations •Costing calculations •Fixed Capital cost •Operating (manufacturing) cost •Economic Analysis (tasks 8-9)

Mass and Energy balances for Ethanol Process Flowsheet (task 7)

	(3 ₆₁₁	μ ₀₂	μ_{i}	μ ₂	μ ₃₁	μ ₃₂	μ_{41}	μ_{42}	μ ₀₃
Methane (gmol/s)	1	0	200	200	199.2	0.8	199.2	0	0
Ethylene	96	0	1289	1198.77	1180.78	17.98	1155.99	24.796	0
Propylene	3	0	268.6	266.71	248.58	18.136	223.97	24.609	0
Diethyl Ether	0	0	0	2,421	1.210	1.2108	0.2906	0.9202	0
Ethanol	0	0	0.56	90.79	10.98	79.80	0.1098	10.87	0
Isopropanol	0	0	0	1.8802	0.156	1.724	0.001018	0.1550	0
Water	0	771.797	773.4	680.72	36,75	643.97	1.610	72.896	37.747
Total	100	771.797	2531.56	2441.31	1677.68	763.62	1581.177	134.25	37.747
→ Temperature, K	300	300	590	590	393	393	381.57	338.7	310
-> Pressure, bar	· · · · ·	1	69	69	68.5	68.5	68	68	68
Vap. Frac	}	0	1	1	1	0	1	0	0
> Enthalpy, kcal/s	1198.85	52097.04 -	-21683.63 -	-22689.24	11515.18	-47920.28	13439.75	-5324.42	-2544.97
	μ ₅₁	μ ₅₂	μ ₆	μ ₇₁	μ	μ_{72} μ_{81}	μ ₈₂	μ ₉₁	μ ₉₂
Methane (gmol/s)	198.204	0.996	0.8	0.8		0 0.8	0	0	0
Ethylene	1150.21	5.780	42.778	42.778		0 42.7781	0	0	0
Propylene	222.85	1.1198	42.746	42.746		0 42.7466	0		n s É 0 ⊵
Diethyl Ether	0.2891	0.00145	2.131	2.131		0 2.1205	0.01065	0.01065	0
Ethanol	0.1093	0.000549	90.680	90.226	0.45	34 0.451	89.775	89.3267	0.4489
Isopropanol	0.001013	5.09323E-06	1.879	1.804	0.0	75 0	1.804	0.1046	1.6994
Water	1.6024	0.00805	716.867	71.68	645.	18 0	71.686	15.1490	56.537
Total	1573.27	7.9058	897.882	252.173	645.	70 88.896	163.277	104.591	58.686
Temperature, K	381.57	381.57	372	310	48	80 310	418	350	383
Pressure, bar	67.5	67.5	68	17.56	18.0	06 10.7	11.2	1	1.5
Vap. Frac	.1	1	0	0		0 1	0	0	é, Ó
Enthalpy, kcal/s	13372.55	67.197	-53244.70	-10436.14	-42629.3	37 590.10	-10576.78	-6787.79	-3930.30

- I. Prepare a list of unit operations found in the flowsheet
- II. For each unit operation, find a design that matches the calculated input-output conditions to obtain the sizing parameters
- **III.** Use the sizing parameters to determine the **cost** of each unit operation

Decisions that need to be made

- **Choice of equipment type**
- **Choice of pressure (already made)**
- **Choice of material**
- **Other parameters specific to the unit operation**

Step I: Prepare a list of unit operations found in the flowsheet

Flow-pressure

pumps, compressors, expansion valves, ... Heat exchange

shell & tube, condensers, reboilers, furnace Reactors

plug-flow, CSTR, fluidized bed, Separation (heat & mass transfer) - equilibrium distillation, absorption, crystallization, Separation (heat & mass transfer) - nonequilibrium membrane-based, centrifuge, drying, Other

refrigeration cycle, heat pump cycle, dryer, tank

Step II: For each unit operation, find a design that matches the calculated input-output conditions to obtain the sizing parameters

Unit operation	Equipment	Equipment type	Sizing parameters
Distillation column	Pressure vessel	Vertical	D (diameter), L (height)
Absorption column			
Extraction column			
Tankstorage			
Extraction column	Pressure vessel	Horizontal	D (diameter), L (length)
Tank (storage)			
Furnace	Processing equipment	Vessel + tubes	S (absorbed heat = energy/h)
Direct fired heater			
Heat exchanger	Processing equipment	Shell & tube	S (area)
Air cooler	Processing equipment	Vessel + tubes	S (area)
Pumps	Processing equipment	Centrifugal	S (C/H factor)
Compressor	Processing equipment	Adiabatic/isothermal;	S (brake horse power)
		motor driven	
Compressor	Processing equipment	Adiabatic/isothermal;	S (brake horse power)
		turbine driven	
Refrigeration	Processing equipment	Complete network	S (too energy removed/h)

Course: Process Design Principles & Methods, L7, PSE for SPEED, Rafique Gani See tables 4.11 & 4.12 of textbook

Step II: For each unit operation, find a design that matches the calculated input-output conditions to obtain the sizing parameters

Unit operation	Equipment type	Sizing parameters	Calculation procedure
Distillation column	Vertical	D (diameter), L (height)	See example 4.1 in textbook*
Absorption column			See example 4.1 in textbook*
Extraction column			See example 4.1 in textbook*
Tankstorage			V = 2 (F ₁ τ/ρ_1); see Eq. 4.1
Extraction column	Horizontal	D (diameter), L (length)	Similar to example 4.1
Tank (storage)			V = 2 (F ₁ τ/ρ_1); see Eq. 4.1
Furnace	Vessel + tubes	S (absorbed heat =	See Perry's Handbook
Direct fired heater		energy/h)	See Perry's Handbook
Heat exchanger	Shell & tube	S (area)	Eq. 4.4 plus table 4.3*
Air cooler	Vessel + tubes	S (area)	Eq. 4.4 plus table 4.3*
Pumps	Centrifugal	S (C/H factor)	See textbook*, Perry's
Compressor	Adiabatic/isothermal;	S (brake horse power)	<u>W</u> _b = W/(ղ _m ղ _c); ղ _m =0.9;
	motor driven		η _c =0.8 (see Eq. 4.24)*
Compressor	Adiabatic/isothermal;	S (brake horse power)	W _b = W/(η _m η _c); η _m =0.8;
	turbine driven		η _α =0.8 (see Eq. 4.24)*
Refrigeration	Complete network	S (ton energy removed/h)	See examples 4.3 & 4.4

* Commercial simulators also provide options for sizing parameters for most conventional unit operations

See also Perry's Handbook

Sizing & Costing Calculations: Refrigeration

FIGURE 4.10 Refrigeration cycle and phase diagram.

EXAMPLE 4.3

Suppose we want to cool air as a process stream to 180K. Consider the refrigerants:

R	$T_{\text{boil}}(\mathbf{K})$	$0.9T_{c}(K)$
Ethylene	169	254
Propane	231	332

We know that ethylene will go down to 180 K but not up to 300 K. The opposite holds for propane. Therefore, we need at least two stages: one propane, one ethylene.

9

Distillation Column Design - Determine, Reflux ratio, Number of stages, Column diameter, Tray height, Heat duties for reboiler & condenser (*following the example 4.1 in textbook*)

- Use the $\alpha_{lk/hk}$, ξ_{lk} , ξ_{hk} to calculate $N_i \& R_i$
- Calculate $N_t = 0.8 \max_i(N_i) + (1-0.8) \min_i(N_i)$; use efficiency of 80%
- Calculate $R = 0.8 \max_{i}(N_{i}) + (1-0.8) \min_{i}(N_{i})$
- Calculate L' and V' and from it, F_{lv}
- Use F_{lv} and Fig 4.4 to obtain $C_{sb,t}$ (for a selected tray spacing)
- Calculate flooding velocity, U_{nf}, and from it, the area A and diameter D of the column (use Eqs. 4.7 or 4.8 and 4.9)
- Determine Tray stack height, extra feed space, disengagement space (top & bottom), skirt height
- $\mathbf{Q}_{\text{cond}} = \mathbf{H}^{\mathbf{V}} \mathbf{V} \mathbf{h}^{\mathbf{L}} \mathbf{L}$
- Calculate Q_{reboil} from total energy balance

Distillation Column Design - Determine, Reflux ratio, Number of stages, Column diameter, Tray height, Heat duties for reboiler & condenser (*Using PRO-II*)

- Use Short-Cut Fractionation (for column design)
- Use rigorous simulation model to obtain the final design
- Use the "sizing" calculation option for the column design
- Select the column diameter, tray spacing, etc., from the output of PRO-II
- For condenser duty = Q_{cond} (given by PRO-II), size a heat exchanger (determine area A)
- For reboiler duty = Q_{reboil} (given by PRO-II), size a heat exchanger (kettle-type) determine area
- Determine Tray stack height, extra feed space, disengagement space (top & bottom), skirt height

Absorption Column Design - Determine, absorption factor, Number of stages, Column diameter, Tray height, Heat duties for reboiler & condenser

- Use the $\alpha_{lk/hk}$, ξ_{lk} , ξ_{hk} to calculate N_t
- Calculate N_t from Kremser equation (approx = 10)
- Use efficiency of 20% (*not necessary if Kremser Eq used*)
- Calculate L' and V' and from it, F_{lv}
- Use F_{lv} and Fig 4.4 to obtain $C_{sb,t}$ (for a selected tray spacing)
- Calculate flooding velocity, U_{nf}, and from it, the area A and diameter D of the column (use Eqs. 4.7 or 4.8 and 4.9)
- Determine Tray stack height, extra feed space, disengagement space (top & bottom), skirt height
- Packed columns can also be calculated from the number of transfer units and height of transfer units

Course: Process Design Principles & Methods, L7, PSE for SPEED, Rafiqul Gani

12

Step III: Use the sizing parameters to determine the **cost** of each unit operation

- For each equipment, calculate the **FIXED CAPITAL COST**
- * total installed cost = BC (MPF + MF -1)
- * updated bare module cost = BMC = UF (BC (MPF + MF -1))
- * contingency cost = B
- * building, services, land = C

Fixed Capital cost = BMC + B + C

For each equipment, total installed cost = BC (MPF + MF -1)

- For each equipment, using the sizing parameters obtain values of C_0 , S_0 , S, D, D_0 , L, L_0 , α , β from tables 4.11 & 4.12
- Obtain BC from
 - BC = $C_0(L/L_0)^{\alpha}(D/D0)^{\beta}$ for pressure vessels (table 4.11) or
 - **BC** = $C_0 (S/S_0)^{\alpha}$ process equipment (table 4.12)
- Obtain MF from tables 4.11 & 4.12, based on the calculated value of BC
- Obtain MPF from the Guthrie material and pressure correction factors for each equipment (tables 4.1 4.10)

Equipment Type	$C_0(\$)$	$L_0(\mathrm{ft})$	$D_0(ft)$	α	β	MF2/MF4/MF6/MF8/MF
Vertical fabrication $1 \le D \le 10$ ft, $4 \le L \le 10$	1000 0 ft	4.0	3.0	0.81	1.05	4.23/4.12/4.07/4.06/4.02
Horizontal fabrication $1 \le D \le 10$ ft, $4 \le L \le 10$	690 0 ft	4.0	3.0	0.78	0.98	3.18/3.06/3.01/2.99/2.96
Tray stacks $2 \le D \le 10$ ft, $1 \le L \le 50$	180 Oft	10.0	2.0	0.97	1,45	1.0/1.0/1.0/1.0/1.0

(Data from Guthrie, 1969)

Equipment Type	$C_0($10^3)$	S ₀	Range(S)	α	MF2/MF4/MF6/MF8/MF10
Process furnaces $S = Absorbed duty$ (100 10 ⁶ Btu/hr)	30	10-300	0.83	2.27/2.19/2.16/2.15/2.13
Direct fired heaters S = Absorbed duty (20 10 ⁶ Btu/hr)	5	140	0.77	2.23/2.15/2.13/2.12/2.10
Heat exchanger Shell and tube, $S = A$	5 Area (ft ²)	400	100104	0.65	3.29/3.18/3.14/3.12/3.09
Heat exchanger Shell and tube, $S = A$	0.3 Area (ft ²)	5.5	2-100	0.024	1.83/1.83/1.83/1.83/1.83
Air coolers S = [Calculated area	3 (ft ²)/15.5}	200	100-104	0.82	2,31/2.21/2.18/2.16/2.15
Centrifugal pumps	0.39 0.65 1.5	10 2 • 10 ³ 2 • 10 ⁴	$10-2 \cdot 10^{3} \\ 2 \cdot 10^{3}-2 \cdot 10^{4} \\ 2 \cdot 10^{4}-2 \cdot 10^{5}$	0.17 0.36 0.64	3.38/3.28/3.24/3.23/3.20 3.38/3.28/3.24/3.23/3.20 3.38/3.28/3.24/3.23/3.20
S = C/H factor (gpm	× psi)				
Compressors S = brake horsepowe	23 er	100	30-104	0.77	3.11/3.01/2.97/2.96/2.93
Refrigeration S = ton refrigeration	60 (12,000 Btu	200 /hr remov	50–3000 (red)	0.70	1:42

TABLE 4.12 Base Costs for Process Equipment

-

Sizing & Costing Calculations: BMCTotal installed cost = BC (MPF + MF -1)Sum for all equipments

Updated bare module cost = BMC = UF (BC (MPF + MF - 1))

UF = (present cost index) / (base cost index) = 3.12 (approx)

Fit the following data as a function of year to obtain UF:Year 1957-5919681970198319931995CI100115126316359381Then use the fitted function to predict the CI for 2013

Example: Calculate BMC for a compressor Total work (W) is 76.56 kW (see example 4.2 of textbook) Calculate $W_b = W/0.72 = 106.3 \text{ kW} = 142 \text{ hp}$ Use Table 4.12 to calculate BC = BC = $C_0 (S/S_0)^{\alpha}$

S = 142; C₀ = 23000 ; S₀ = 100 ; $\alpha = 0.77$; BC = 30000

Based on the BC value, identify the MF to use (see page 135 of textbook) from table 4.12. For BC = 30000, MF2 needs to be used from Table 4.12; MF = MF2 = 3.11

Use table 4.9 to obtain MPF = Fd = 1.0 (for centrifugal compressor with motor – design decisions)

BMC = UF (BC (MPF + MF - 1)) = (3.12) (30000) (1 + 3.11 - 1)

Example: Calculate BMC for a distillation column

From example 4.1, D = 0.82m; L = 19.2 m; Tray stack height = 13.2 m (24 inch tray spacing)

Use Table 4.11 to calculate BC = $C_0(L/L_0)^{\alpha}(D/D0)^{\beta}$

 $C_0 = 1000$; $L_0 = 4$; $D_0 = 3$; $\alpha = 0.81$; $\beta = 1.05$; BC = 8350

- Based on the BC value, identify the MF to use (see page 135 of textbook) from table 4.11. For BC = 8350, MF2 needs to be used from Table 4.11; MF = MF2 = 4.23
- Use table 4.7 to obtain MPF = $F_m + F_s + F_l = 1.0$ (for sieve tray and carbon steel – design decisions)

BMC = UF (BC (MPF + MF - 1)) = (3.12) (8350) (1 + 4.23 - 1)

Example: Fixed Capital Cost Calculation

Fixed Capital Cost = A + B + C

- A = Bare Module Cost (BMC)
- **B** = Contingency = 25% of BMC (cost model)
- C = Buildings, service, land = 40% of BMC cost model)

Ethanol production Case Study

- A = 19380 K\$ (sum of all the unit operations)
- B = 0.25 x 19380 = 4845 K
- $C = 0.40 \times 19380 = 9752 K$

Fixed Capital Cost = 33977 K\$

Cost Estimation: Total (Operating) Manufacturing Cost

Total manufacturing cost is the sum of the following items

Assume running time (hours/year) $t_r = 7000 - 8000$

- 1. Raw material $(F_{rm} * C_{rm} * t_r)$
- 2. Maintenance (assume 5% of fixed capital costs)
- 3. Labor (assume 20 workers needed to run the plant)
- 4. Managers (assume 2 managers needed)
- 5. Insurance (assume 2% of fixed capital costs)
- 6. Lab analysis (2 lab technicians)
- 7. Utilities $(F_U * C_U * t_r)$
 - a. Steam
 - b. Electricity
 - c. Cooling water

Total Operating (manufacturing) cost = 1 + 2 + 3 + 4 + 5 + 6 + 7

Cost Estimation: Total Revenue

Total revenue is calculated from the following (yearly basis):

- 1. Sale of the product
- 2. Sale of the by-products
- 3. Utilities credits
 - a. Available sources of energy that can be sold
 - **b.** Available water (cold or hot) that can be re-used

For ethanol case study,

5400 K\$/y < Revenue < 110000 K\$/y

Economic Evaluation (Parts of Chapter 5)

- Total Capital Investment
- Operating Profit
- Net Present Value (NPV), Payback time, Rate of return
- Sensitivity Analysis

Economic Evaluation

Total Capital Investment = A + B + C + D

- A = Bare Module Cost (BMC)
- **B** = Contengency = 25% of BMC
- C = Buildings, service, land = 40% of BMC
- **D** = 1 month production costs (total manufacturing costs)

Ethanol production case study

- A = 19380 K\$
- B = 4845 K\$
- C = 7752 K\$
- D =34317/12 = 2860 K\$

Total Capital Investment = 36837 K\$

Economic Evaluation

Operating Profit = P = R - M

- **M** = Total manufacturing costs
- **R** = **Revenue** from sale of products

Ethanol Production case study

M = Sum of all the operating costs of all equipments plus cost of raw materials = 34318 K\$/y

R = Sale of products = 54000 K\$/y (110000K\$/y)

Operating profit = P = 19682 K\$/y (74682 K\$/y)

Economic Evaluation – Template for presentation

ECONOMIC ANALYSIS

Capital investment (fixed capital costs), €	
Working Capital, €	
Total investment, C _I , €	
Running time, h/yr	

	Item	Amount	Unit	Price**	€/yr	Delta %	€/yr
1. Raw material	Water			1.9e-4			
				€/mol			
2. Other material	Catalyst						
3. Maintenance			5%#				
4. Labor				34,000*			
5. Managers				40,000*			
6. Insurance			2%#				
7. Lab analysis				38,000*			
8. Utilities	Steam			8.5e-5			
				€/mol			
	Electricity			9.2e-3			
				€/kWh			
	CW			1.3e-2			
				€/m^3			
Total							
manufacturing cost							
Revenue							
Total							
Profit (P)							

*€/(man).yr ; [#] % of the plant cost; ** prices in Denmark (Europe)

Economic Evaluation – Template for presentation

NVP calculations

$$NPV = -C_I + P \cdot \left(1 - \left(1 + i\right)^{-n}\right) / i$$

$$C_{I,} \in =$$

$$P, \in =$$

Method	Spe	cify	Spe	cify	Calc	ulate
	Item	Value	Item	Value	Item	Value
Present value						
Rate of return						
Pay back time						

Economic Evaluation (NPV, Payback Time & Rate of Return)

- **Net Present Value (NPV)**
- NPV = $C_I + P [1 (1 + i)^{-n}]/i$
- **C**_I = **Capital Investment**
- **P** = **Operating Profit**
- **i** = interest rate (fraction)
- **n** = **process life time (years)**
- Calculate NPV with known values of C_I, P, i=0.1 & n=10
- Calculate Payback Time for NPV = 0, known values of C_I, P, i=0.1
- Calculate Rate of Return for NPV = 0, known values of C_I, P, n=10

Economic Evaluation

- Capital (Cost) Investment
- Operating Profit
- Net Present Value (NPV), Payback time, Rate of return
- Sensitivity Analysis
- What if analysis How will NPV, Payback timeand Rate of return be affected if,
 - the prices of the raw material increases and the product decreases (for example by 10%)?
 - the cost of energy (steam) increases or decreases (for example, by 5% or 10%)?

Economic Evaluation - Exercise

- Calculate NPV, Payback time, Rate of return for the following data:
- Fixed capital costs = 211 (mDKr)
- Running time = 7000 h/y
- Total manufacturing cost, M = 327 mDKr
- Total Profit, P = 400 mDkr
- For i = 0.1, n = 1, NPV = ?
- For NPV = 0, i = 0.1, Payback time = ?
- For NPV = 0, n = 10, Rate of return = ?
- What is the value of NPV if M increases by 10% and R decreases by 9%

Slides 30-38 show screen-shots from the ECON-software. Check the corresponding sheets from EXCEL to get a better picture.

Course: Process Design Principles & Methods, L7, PSE for SPEED, Rafiqul Gani

ECON Software Economic Analysis: Equipment List

No. EXUENTIAT SZE UNIT MATERIAL PUR M-101 Mixer 0.800000024 cabic meters Carbon Steel \$ E-101 Heat Exchanger 34.151 sq.meter 804 Stainless Steel \$ H-103 Heater 18.02 WW Chroms/Waly \$ 6-103 Heat Exchanger 270.916 sq.meter Carbon Steel \$ C-101 Compressor 723.28 WW Carbon Steel \$ D1 TD2 D3 D4 Carbon Steel \$ P300 Heat Exchanger 300 In meter Carbon Steel \$ D1 TD2 D3 D4 Carbon Steel \$ \$ Heat Exchanger 12.39 at meter Carbon Steel \$ \$ T-102 Heat Exchanger 312.87 sq.meter Carbon Steel \$ T-102 Heat Exchanger 312.87 sq.meter Carbon Steel \$ T-102	SQUIPMENT								
M-101 Mixer D.B00000024 sable metera Carbon Shell \$ E-101 Heat Exchanger 34.151 sq.meter 304 Stainless Steel \$ H-101 Heat Exchanger 18.02 kW Chrome/Moly \$ E-101 Heat Exchanger 270.916 sq.meter Carbon Steel \$ C-101 Compressor 723.28 kW Carbon Steel \$ D1 TD2 D3 D4 Carbon Steel \$ Heat Exchanger 300 to meter Carbon Steel \$ Tc-101 Heat Exchanger 12.39 sq.meter Carbon Steel \$ Tc-102 Heat Exchanger 12.39 sq.meter Carbon Steel \$ Tc-102 Towar Unit 36.74 matera Carbon Steel \$ Tc-102 Heat Exchanger 312.87 sq.meter Carbon Steel \$ Tc-103 Heat Exchanger 273.54 sq.meter Carbon Steel \$ Tc-103	No.	EQUIPMENT		517E	UNIT	MATERIAL	PU	ICHASE COST	
T-F101 Tower linit 4.728 meters Carbon Steel S	No. M-101 E-101 H-101 E-403 C-101 F-8101 D-1 T-101 T-102 Tr-102 Tr-102 Tr-102 Tr-102 Tr-103 Tr-103 Tr-103 Tr-103 Tr-103	Heat Exchanger Heat Exchanger	··· 📙 ···	321 0.600000024 34.151 16.02 270.916 728.28 300 D3 104.52 12.39 16.74 35 512.87 278.54 12.71 12 261.71 207.33	UNIT cabic metera sq.meter kW sq.meter kW sq.meter by sq.meter aq.meter sq.meter sq.meter sq.meter sq.meter sq.meter sq.meter aq.meter	Carbon Steel Chrome/Moly Carbon Steel Chrome/Moly Carbon Steel Carbon Steel		4,525.00 6,983.00 28,245.00 19,844.00 402,019.00 225,547.00 19,647.00 4,730.00 137,149.00 27,981.00 27,981.00 20,887.00 18,732.00 69,929.00 15,288.00 18,084.00 15,098.00	
	T-F101	Tower Unit		4.728	meters	Carbon Steel	s	170,656.00	DZ

D1: Equipment ID number; D2: Equipment type; D3: Sizing parameter; D4: Unit; D5: Material; D6: Equipment purchase cost; D7: Total purchase cost

ECON Software Economic Analysis: Utility List

литү							
No	EQUIPMENT	Utality	SIZE	UNIT	PRICE S/GI		UTUTY COST
M-101 E-101 H-101 E-105 C-101 E-R101 T-101 T-101 T-101 T-102 T-102	Mixer Heat Exchanger Heat Exchanger Compressor Heat Exchanger Tower Unit Value tray Heat Dog sor Heat Dog sor Value tray	Electricity HP utility Natural Gas Cooling suster Electricity n/a n/a n/a	0 2452.3 16.02 0.018959 723.28 n/s n/s D11	kw kw kw kw rv/a rv/a rv/a D12	16,79999924 9,829999924 6 0,349999924 16,79999924 0 n/s n/s 0 D13	0 0 0 4 4 4 4 4 4 0 0 0 0	687,285,31 17,107,20 0,19 346,452,28 D14 2 2
Tc-102 T-108 Tt-108 Tr-108 Tc-103 Tc-103 T-P101	Heat Exchanger Tower Unit Valve trav Heat Exchanger Heat Exchanger Tower Unit	Cooling water n/8 n/8 MP steam Cooling water n/a	4.354 n/a n/b 4.768 4.758 n/s		8.22000257 0.349999994 n/b 8.220000257 0.349999994 n/s	****	43.95 43.95 1,117.47 48.02
1				010	Total	1.5	1,053,067.00

D8: Equipment ID number; D9: Equipment type; D10: Utility type; D11: Sizing parameter; D12: Unit; D13: Price per unit (\$/GJ); D14: Utility cost; D15: Total utility cost

kanafacturing Fixed-capital Investment (Direct Cost)	Percent of Delivered-equipment for Fluid Processing Plant	Result
Furchased Equipment Delivered	11	\$1,467,291.1
Purchased Equipment Installation	0.47	\$689,626.8
Instrumentation and Controls (Installed)	6.36	\$528,228.8
Fiping (Installed)	0.68	\$997,757.4
Electrical Systems (Installed)	0.11	\$161,402.0
Buildings (including Services)	0.18	\$264,112.4
Ward Improvement	0.1	\$146,729.1
Service Facilities (installed)	6.7	\$1,027,100.7
S 19	2.6	
	Total Direct Cost	\$5,282,247.
nanufacturing Fined-capital Investment (Indirect Cost)	Percent of Delivered-equipment for	Result
Environmenting and Supervision	0.33	\$404 208 d
Construction Expenses	0.41	5801 589
Legal Expenses	0.04	\$58,691,1
Contramor's Fees	0.22	\$822,804
Contineency	0.44	5645,605
	144	
	Total indirect cost	\$2,112,899
Final-repited Investment	Percent of Delivered-equipment for	Result
Pixed-capital Investment (PCI)	- Hund Houcasing Hann	\$7,595,147.
	Percent of Delivered-couloners for	
Working Capital Investment	Fluid Processing Plant	Result
Working Capital Investmenst (WC)	0.89	S1,345,889

B1

B2

B3

Direct cost (B1); indirect cost (B2); working cost (B3); and total capital cost (B4).

Items of Operating Cost	Factor (can change by user)	Baric	Cart,
Raw Material	0	The local state and the second states of the	\$25,592,601.00
Operating Labor	0.02	Rived Capital Investment	51+7,902.94
Operating Supervision	0.15	Operating Labor	\$22,385.44
Utilities	0		\$1,053,067.00
Maintenance and Repairs	0.06	Fixed Capital Investment	\$443,708.83
Operating Supplies	0.15	Maintenance and Supplies	566,556,32
Laboratory Charges	0.15	Operating Labor	\$22,355.44
Royalties	0.01	Total Product Cost	\$209,785.06
		Variable Cost	\$17,657,692.02
Property Taxes	0.02	Read Capital Investment	\$147,902.94
Rinancing(interest)	0	Read Capital Investment	50.00
Insurance	0.05	Fixed Cepital Investment	\$73,951.47
Rant	0	Road Capital Investment	\$0.00
		Fixed Charges	\$221,854,45
Plant Overhead	0.6	Lebor + Supervision + Maintenace	\$568,278.33
		Manefacturing Cost	527,879,846.4
Administration	0.2	Lebor + Supervision + Maintenace	\$122,755.4
Distribution & selling	0.05	Total Product Cost	\$1,540,925.30
Research & Development	0.04	Total Product Cost	\$1,239,140.2
	/	General Expense	\$2,910,824.8
	Total	Total Preduct Cost with Out Depreciation	
R. Street and	•		

B1: variable costs; B2: of ixed sharges; B3: ManufacturingEcosts; B4: general axpenses; 37 and B5: total product costs; B6 values can be changed to recalculate the costs.

ECONOMIC ANALYSIS TOOLS								
Freis at Lin Stars Landbart		Economic Evaluation						
Frankrich Antonia Ratu TP Cit. Antonia Ratu		Yoar	-2	-1	0	1		
History Rote of Return, H _a , Income Tex Aste		Production Capacity				100%		
Carl and Carlos and Ca		All Maney						
		Land	\$ -					
Francis Fran		Fixed Capital Investment	\$ (2,588,301.50)	\$ (3,734,549.31)	\$ (1,131,568.44)			
- Contract Contract		Working Capital Investment			\$ (1,316,355.78)			
		Total Capital Investment	\$ (2,588,301.50)	\$ (3,734,549.31)	\$(2,447,924.22)			
-		Start-up Exponso				\$ (745,441.92)		
		Annual Saler				\$ 31,246,227.45		
: °		Total Product Cart				\$ (31,917,185.71)		
		Depreciation Factor				7%		
-		Depreciation				\$ 532,245.53		
Mi		Grazz Profit				\$ (884,154.65)		
-		Not Profit				\$ (884,154.65)		
		Total Asseal Cark Flou	(\$2,588,301.50)	(\$3,734,549.31)	(\$2,447,924.22)	(\$1,097,351.04)		
Proposition of the second s	1474	Camalative Cark Flau	\$ (2,588,301.50)	\$ (6,322,851.00)	\$(8,770,775.00)	\$ (9,868,126.00)		
Present/Wards DOTE	1 (D.471,4) 9,50417							
Present Parts for the	1.0.4.0.4	Annual End of Toer Carb Flour and Direcounting						
		NPV						
		Present Worth Factor	1.3225	1.15	1	0.869565217		

Course: Process Design Principles & Methods, L7, PSE for SPEED, Rafiqul Gani

38

Sensitivity analysis

Course: Process Design Principles & Methods, L7, PSE for SPEED, Rafiqul Gani