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Lecture 5a: Computer Aided Modelling

Key issues to consider

❖ Must analyze before solving

▪ Degrees of freedom analysis

▪ Incidence matrix; singularity of equation 

system; index-number

▪ Stability of the model
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Lecture 5a: Computer Aided Modelling

Degrees of freedom analysis - 1

Classify equations

Algebraic equations (AEs)

•explicit (a = b*x + c with b, c, x as known)

•implicit (0 = b*x(a) + c – a with b, c as 

known) 

Ordinary differential equations (ODEs)

•first order ODEs (dy/dt = f(y, t)

Partial differential equations (PDEs)

•time plus one-three spatial directions for  

different coordinate systems

Note: Mathematical model can have any combination of above
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Lecture 5a: Computer Aided Modelling

Degrees of freedom analysis - 2

Classify variables

Known

variables fixed by system 

variables fixed by problem

variables fixed by model

Unknown

dependent (differential)

dependent (partial differential)

implicit (algebraic)

explicit (algebraic)

Independent

time, length, ..
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Lecture 5a: Computer Aided Modelling

Degrees of freedom analysis - 3

Definition (NDF or NS; degrees of freedom or number of variables 

to specify):

-NV = total number of variables (not counting 

independent variables)

-NU = number of unknown variables

-NE = number of independent equations

Assign dependent (partial) to PDEs; dependent (differential) 

to ODEs; implicit & explicit algebraic to AEs 

DF V EN N N  S V UN N N OR
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Lecture 5a: Computer Aided Modelling

Example DoF analysis
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Lecture 5a: Computer Aided Modelling

Different specifications (DoF selection)
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Lecture 5a: Computer Aided Modelling

High index DAEs

❖Only for Differential-algebraic equations 

(for PDEs, first discretize the PDEs)

❖ Pure ODE systems are index 0

❖Many index 1 DAE solvers

❖ Few higher index solvers

❖Ensure index 1 models are used
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DAE index definition

❖The “index” of the DAE system is the 

number of times the algebraic sub-

system must be differentiated to give a 

set of ODEs.
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Lecture 5a: Computer Aided Modelling

General DAE system

General system
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Lecture 5a: Computer Aided Modelling

High index example
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Lecture 5a: Computer Aided Modelling

What is the index of this model?
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Lecture 5a: Computer Aided Modelling

Exercise - 4 : What is the index of this model?
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Lecture 5a: Computer Aided Modelling

Stability of the model

❖Indicated by the dynamic modes
- time constants of the system

- related to physico-chemical phenomena

•fluid flow (generally fast)

•mass transfer rates (can be slow)

•heat transfer (usually slow)

•reaction kinetics (very fast to very slow)

i

i




1




15

Lecture 5a: Computer Aided Modelling

Linear model analysis

Linear equation system

Solution given by
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Lecture 5a: Computer Aided Modelling

Computing eigen-values of the J-matrix

❖ In MoT, write the 

ODE system; and then 

ask for calculation of 

the eigen-values

❖ For problem of slide 

13, the solution is:

Solution with MATLAB 

» A=[-2000 999.75;1 -1];

» b=eig(A)

b =

1.0e+003 *

-2.0005

-0.0005

Two eigen-values

(-2000.5, -0.5)
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General linear system analysis
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Lecture 5a: Computer Aided Modelling

Eigen-value analysis

❖ Dynamic modes determined by eigen-values of  

the linear system

❖ Nonlinear problems must be linearised first to 

get Jacobian J(y,t) on the trajectory

❖ Eigen-values of Jacobian computed using MoT 

or MATLAB eig(A) or similar function.
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Lecture 5a: Computer Aided Modelling

Behaviour of linear systems

❖ Phase plane analysis illustrates motion of system

❖ Second order systems plot 

❖ Typical second order system (cf. valve actuator) :
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Phase plane analysis

❖ Several cases dependent on eigen-values

parts real zero with conjugatescomplex   and 

parts real zero-non with conjugatescomplex   and 
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Lecture 5a: Computer Aided Modelling

Phase plane diagrams
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Lecture 5a: Computer Aided Modelling

General nonlinear model

❖Linearize at some point

❖Obtain linear model

❖Solution is
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Lecture 5a: Computer Aided Modelling

Stability cases

❖ Stable model

❖ Unstable model

❖ Ultra-stable (“stiff”)
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Lecture 5a: Computer Aided Modelling

Stability implications for numerical solution

❖ The problem determines the choice of numerical    

method

❖ “Stiff” problems need special attention

❖ All simple explicit methods have limitations on 

allowable step lengths
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
h



25
Lecture 5a: Computer Aided Modelling

Multiscale, lumping, simplification, stability: Example

• Fluid zone

• Particle zone

• Heat transfer 

zone

• Catalyst 

recovery zone
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Lecture 5a: Computer Aided Modelling

Multiscale balance  relations

Multiscale, lumping, simplification, stability: Example
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Lecture 5a: Computer Aided Modelling

Constitutive relations

Multiscale, lumping, simplification, stability: Example
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Multiscale, lumping, simplification, stability: Example
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Stability analysis

• Multiple steady states

• Unstable state

Multiscale, lumping, simplification, stability: Example


