

Lecture 5a: Model Analysis - Lumped Parameter & DPS Models

Rafiqul Gani (Plus material from Ian Cameron)

PSE for SPEED Skyttemosen 6, DK-3450 Allerod, Denmark rgani2018@gmail.com

www.pseforspeed.com

Key issues to consider

* Must analyze before solving

- Degrees of freedom analysis
- Incidence matrix; singularity of equation system; index-number
- Stability of the model

Degrees of freedom analysis - 1

Classify equations Algebraic equations (AEs) •explicit (a = b*x + c with b, c, x as known) •implicit $(0 = b^*x(a) + c - a \text{ with } b, c \text{ as})$ known) **Ordinary differential equations (ODEs)** •first order ODEs (dy/dt = f(y, t))**Partial differential equations (PDEs)** time plus one-three spatial directions for different coordinate systems

Note: Mathematical model can have any combination of above

Degrees of freedom analysis - 2

Classify variables Known variables fixed by system variables fixed by problem variables fixed by model **Unknown** dependent (differential) dependent (partial differential) **implicit** (algebraic) explicit (algebraic) Independent time, length, ..

Degrees of freedom analysis - 3

Definition (N_{DF} or N_S ; degrees of freedom or number of variables to specify):

$$N_{DF} = N_V - N_E \quad \text{or} \quad N_S = N_V - N_U$$

 $-N_V =$ total number of variables (not counting independent variables) $-N_U =$ number of unknown variables $-N_E =$ number of independent equations

Assign dependent (partial) to PDEs; dependent (differential) to ODEs; implicit & explicit algebraic to AEs

Example DoF analysis

Introduction to MoTModel constructionModel analysis

Model

 $\frac{dz}{dt} = \frac{(F_1 - F_2)}{A}$ $F_1 - C_V \sqrt{P_1 - P_2} = 0$ $F_2 - C_V \sqrt{P_2 - P_3} = 0$ $P_2 - P_0 - \rho gz = 0$

DOF analysis

State (dependent-differential) variable = zAlgebraic variables $= F_1, F_2, P_0, P_1, P_2, P_3$ Parameters $= C_V, A, \rho$ Constants = gEquations = 1 + 3 $N_{DF} = N_V - N_E = 11 - 4 = 7$ Algebraic variables = zAlgebraic variables = zAssign z to ODE; C_v, A , ρ, g as fixed by system; select 3 variables from "algebraic" as fixed & 3 as unkown

Different specifications (DoF selection)

Select 3 variables from "algebraic" as fixed, making the remaining 3 as unknown and assigned to the AEs

	Specification 2			Specification 1						
	P_2]	$P_{0}, P_{1},$	$= [P_0]$	<i>S</i> ₂ =		,]	, 1	$, P_{1}, P_{1}$	$= [P_0]$	<i>S</i> ₁ =
	P_3	F_2	F_1			D 2		F_2	F_1	
T T 1 1 1			X	g_1		X			X	g_1
Unsolvable system?	X	Х		g_2		X		X		g_2
·				g_3		X				g_3

High index DAEs

- Only for Differential-algebraic equations (for PDEs, first discretize the PDEs)
- Pure ODE systems are index 0
- Many index 1 DAE solvers
- Few higher index solvers
- Ensure index 1 models are used

DAE index definition

The "index" of the DAE system is the number of times the algebraic subsystem must be differentiated to give a set of ODEs.

General DAE system

General system

$$\frac{dy}{dt} = f(y, z, t)$$
$$0 = g(y, z, t)$$

Differentiate the algebraic equations

$$0 = g_{y} \frac{dy}{dt} + g_{z} \frac{dz}{dt}$$

$$0 = g_{y} f + g_{z} \frac{dz}{dt}$$

$$\frac{dz}{dt} = -g_{z}^{-1} g_{y} f \quad iff \quad g_{z} \quad full \, rank$$

Lecture 5a: Computer Aided Modelling

What is full

rank?

High index example

Case 1

$$y_1 = y_1 + y_2 + z_1$$

$$y_2 = y_1 - y_2 - z_1$$

$$0 = y_1 + 2y_2 - z_1$$

Differentiate once

$$\mathbf{x} = \mathbf{x} + 2\mathbf{x}$$

$$x_1 = 3y_1 - y_2 - z_1$$

index 1 model!

Case 2
$$\Re = y_1 + y_2 + z_1$$

 $\Re = y_1 - y_2 - z_1$
 $0 = y_1 + 2y_2$
Differentiate once
 $0 = \Re + 2\Re 2$
 $0 = 3y_1 - y_2 - z_1$
and again ...
 $0 = 3\Re - \Re 2 - \Re 2$
 $\Re 2 = 2y_1 + 4y_2 + 4z$
index 2 model !

What is the index of this model?

Model

$$\frac{dz}{dt} = \frac{(F_1 - F_2)}{A}$$
$$F_1 - C_V \sqrt{P_1 - P_2} = 0$$
$$F_2 - C_V \sqrt{P_2 - P_3} = 0$$
$$P_2 - P_0 - \rho gz = 0$$

Specification 1

$$S_1 = \left[P_0, P_1, P_3\right]$$

	F_1	F_2	P_2
g_1	X		Χ
g_2		Х	X
g_3			X

- Insert F1 and F2 into Eq. 1
- Differentiate Eq. 4 with respect to t
- What happens if P₀, P₁, P₂ are specified?

Exercise - 4 : What is the index of this model?

System

Tank

Conservation

$$\frac{dH}{dt} = Q + F_1 \hat{h}_1 - F_2 \hat{h}_2$$

Constitutive

 $Q = UA(T_H - T)$ $\hat{h}_1 = f(T_1, P)$ $\hat{h}_2 = f(T_2, P)$ $H = Mc_P T$ $A = \pi D z$

Jacket

Conservation

$$\frac{dH_J}{dt} = F_H \hat{h}_{Hi} - F_H \hat{h}_{Ho} - Q$$

Constitutive

$$Q = F_H c_{PH} (T_{Hi} - T_{Ho})$$
$$\hat{h}_{Hi} = f (T_{Hi}, P)$$
$$\hat{h}_{Ho} = f (T_{Ho}, P)$$
$$H_J = M_{HJ} c_{PH} T_H$$
$$T_H = (T_{Hi} + T_{Ho})/2$$

Stability of the model

Indicated by the dynamic modes

- time constants of the system

related to physico-chemical phenomena
fluid flow (generally fast)
mass transfer rates (can be slow)
heat transfer (usually slow)
reaction kinetics (very fast to very slow)

Linear model analysis

Linear equation system

$$\begin{aligned} y' &= Ay + \phi \\ \begin{pmatrix} y'_1 \\ y'_2 \end{pmatrix} &= \begin{pmatrix} -2000 & 999.75 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} + \begin{pmatrix} 1000.25 \\ 0 \end{pmatrix} \end{aligned}$$

Solution given by

 $y_{1}(t) = -1.449e^{-0.5t} + 0.499e^{-2000.5t} + 1$ $y_{2}(t) = -2.999e^{-0.5t} - 0.0025e^{-2000.5t} + 1$ Slow mode (component) Fast mode (component)

Computing eigen-values of the J-matrix

- In MoT, write the ODE system; and then ask for calculation of the eigen-values
- For problem of slide13, the solution is:

Two eigen-values

(-2000.5, -0.5)

Solution with MATLAB

b =

1.0e+003 *

-2.0005 -0.0005

General linear system analysis

- $\frac{dx}{dt} = Ax,$ $x(t) = Z \exp(\lambda t)$ $x_i(t) = \sum_{ij}^{n} Z_{ij} e^{t}$ where: $Z_{ij} = \sum_{k=1}^{n} V_{ij} \left(V^{-1} \right)_{jk} x_{k}^{0}$
 - - Solution to the equations
 - Individual component solution to the equations
 - note the eigenvalues !
 - note the eigenvectors !

The eigen-values contain the stability information

Eigen-value analysis

- Dynamic modes determined by eigen-values of the <u>linear</u> system
- Nonlinear problems must be <u>linearised</u> first to get Jacobian J(y,t) on the trajectory
- Eigen-values of Jacobian computed using MoT or MATLAB eig(A) or similar function.

Behaviour of linear systems

- Phase plane analysis illustrates motion of system
- * Second order systems plot y_1 vs y_2 or x vs y
- Typical second order system (cf. valve actuator) :

$$\delta x + ay x + by = 0$$

with
$$\lambda_1 = \left\{ -a + \sqrt{a^2 - 4b} \right\} / 2$$

$$\lambda_2 = \left\{ -a - \sqrt{a^2 - 4b} \right\} / 2$$

Set $y_1 = dy/dt = \dot{y}$ $y_2 = dy_1/dt = d^2y/dt = \ddot{y}$ So, $y_2 + a y_1 + by = 0$ Therefore, $dy/dt = y_1$ $dy_1/dt = -(a y_1 + by)$

Phase plane analysis

Several cases dependent on eigen-values

 λ_1 and λ_2 both real and same sign λ_1 and λ_2 both real but opposite sign λ_1 and λ_2 complex conjugates with non - zero real parts λ_1 and λ_2 complex conjugates with zero real parts

Phase plane diagrams

Lecture 5a: Computer Aided Modelling

General nonlinear model

*Linearize at some point
$$y' = f(y,t)$$

*Obtain linear model

$$y' = A(y - g(t)) + f(t, g(t))$$

Solution is

$$y(t) = \sum_{i=1}^{n} C_{i} e^{\lambda_{i} t} V_{i} + g(t)$$

Derive the linear model and solution for: $dy_1/dt = y_1^*y_2 + (y_1)^2$ $dy_2/dt = y_1 + (y_2)^2$

Stability cases

- * Stable model $\lambda_i \leq 0$ for all i
- * Unstable model Some λ_i will be > 0

♦ Ultra-stable ("stiff") $\lambda_i \leq 0$ Some \$\lambda_i\$ "small"
Some \$\lambda_i\$ "large"

Stability implications for numerical solution

- The problem determines the choice of numerical method
- Stiff' problems need special attention
- All simple explicit methods have limitations on allowable step lengths

PSE SPECT Example SPECT Set Stability: Example

- Fluid zone
- Particle zone
- Heat transfer zone
- Catalyst
 recovery zone

Feedstream of reactants

Figure 4.1 Catalytic fluidized bed reactor.

Luss, D. and Amudson, N.R. (1968). Stability of Batch Catalytic Fluidized Beds. AIChE Journal. 14, 211.

PSE SPECT SPECT

Multiscale balance relations

$$f_1(p_p, p) = \frac{dp}{d\tau} = p - p_e + H_g(p_p - p)$$

$$4.7$$

$$f_3\left(p_p, p, T_p\right) = A \frac{dp_p}{d\tau} = H_g\left(p - p_p\right) - H_g K k p_p \qquad 4.9$$

$$f_3\left(T, p_p, T_p\right) = C \frac{dT_p}{d\tau} = H_T\left(T - T_p\right) + H_T F K k p_p \qquad 4.10$$

Figure 4.1 Catalytic fluidized bed reactor.

PSE for SPECT Wultiscale, lumping, simplification, stability: Example

Constitutive relations

Figure 4.1 Catalytic fluidized bed reactor.

$$k = k_0 \exp\left(\frac{-\Delta E}{RT_p}\right)$$

 $(1-\varepsilon)\frac{s_p}{v_p} = a_v$

PSE SPECT SPECT SPECT

$$f_{1}(p_{p}, p) = \frac{dp}{d\tau} = p - p_{e} + H_{\varepsilon}(p_{p} - p)$$

$$f_{2}(T_{p}, T) = \frac{dT}{d\tau} = T_{e} - T + H_{w}(T_{w} - T) + H_{T}(T_{p} - T)$$

$$P_{p}$$

$$T_{p}$$
Micro-scale
$$f_{3}(p_{p}, p, T_{p}) = A\frac{dp_{p}}{d\tau} = H_{\varepsilon}(p - p_{p}) - H_{\varepsilon}Kkp_{p}$$

$$f_{3}(T, p_{p}, T_{p}) = C\frac{dT_{p}}{d\tau} = H_{T}(T - T_{p}) + H_{T}FKkp_{p}$$

Figure 4.3 Data-flow for the batch catalytic fluidized bed reactor.

PSE SPEC Wultiscale, lumping, simplification, stability: Example

Stability analysis

Figure 4.1 Catalytic fluidized bed reactor.

- Multiple steady states
- Unstable state

ĺ	1st SS	2nd SS	3rd SS
p_p	0.0935	0.06694	0.00653
р	0.09352	0.06704	0.00682
T_p	690.72	759.167	915.13
Т	690.45	758.35	912.8
λ_1	-2187.2494513	-2189.306306	-2258.0244252
λ_2	-270.55715028	-270.5775586	-270.60246532
λ_3	-0.9120340679	-1.256116493	-12.560859964
λ_4	-6.4105069E-03	5.6925189E-03	-7.379499E-03