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Key Issues to consider
+ Must analyze before solving
» Degrees of freedom analysis

 Incidence matrix; singularity of equation
system; index-number

« Stability of the model

Lecture 5a: Computer Aided Modelling
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Degrees of freedom analysis - 1

Classify equations

Algebraic equations (AES)
explicit (a = b*x + ¢ with b, ¢, x as known)
simplicit (0 =b*x(a) + c—awith b, c as
known)

Ordinary differential equations (ODES)
first order ODEs (dy/dt = f(y, t)

Partial differential equations (PDES)
time plus one-three spatial directions for
different coordinate systems

Note: Mathematical model can have any combination of above

Lecture 5a: Computer Aided Modelling
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Degrees of freedom analysis - 2

Classify variables
Known
variables fixed by system
variables fixed by problem
variables fixed by model
Unknown
dependent (differential)
dependent (partial differential)
implicit (algebraic)
explicit (algebraic)
Independent
time, length, ..

Lecture 5a: Computer Aided Modelling
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Degrees of freedom analysis - 3

Definition (Nge or Ng; degrees of freedom or number of variables
to specify):

NDF:NV_NE o Ns:Nv_Nu

-N,, = total number of variables (not counting
Independent variables)

-N, = number of unknown variables

-Ng = number of independent equations

Assign dependent (partial) to PDES; dependent (differential)
to ODEs; implicit & explicit algebraic to AEs

Lecture 5a: Computer Aided Modelling
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Example DoF analysis
; Introduction to MoT
i *Model construction
T/\A *Model analysis
V4
Ej»[><1——>P1 P L oapctss
F, F,
Model DOF analysis
dz (R-F) State (dependent-differential) variable = z
dt A Algebraic variables = F,F,,P,,P,P,,P,
F,—Cy /P —P, =0 Parameters=C,,, A, p Assign z to ODE; C,, A,
Constants = g p, g as fixed by system;
F —Cy P =P =0 Equations = 1 +3 select 3 variables from
P,-P,— pgz =0 N =N, —N_ =11-4=7 “algebraic” as fixed &

3 as unkown
Lecture 5a: Computer Aided Modelling
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Different specifications (DoF selection)

Select 3 variables from
P, “algebraic” as fixed,
TM making the remaining 3
z as unknown and assigned
P, > P, > 1Py to the AEs
Specification 1 Specification 2
Slz[PO’Pl’P3] S, :[Po’Plipz]
F F P F F R
g, X X g, X
Unsolvable
X X X X
J2 J2 system?
Js X Js

Lecture 5a: Computer Aided Modelling
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High index DAES

+ Only for Differential-algebraic equations
(for PDEs, first discretize the PDES)

« Pure ODE systems are index 0
« Many index 1 DAE solvers

« Few higher index solvers

« Ensure index 1 models are used

Lecture 5a: Computer Aided Modelling
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DAE index definition

< The “index” of the DAE system 1s the
number of times the algebraic sub-
system must be differentiated to give a
set of ODEs.

Lecture 5a: Computer Aided Modelling
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General DAE system

General system dy
— = f(y,z,t
" (Y, 2,1)
0=g(y,z1)
Differentiate the algebraic equations
_q b,
=9 g T 9 gy
¢ dz
0=g, +gza What is full
rank?
dz 9

—=-g, 9,f iff g, fullrank

Lecture 5a: Computer Aided Modelling
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High index example

Case 1l Case 2 3852 YitY,+4
ngzyl-|-y2—|—z1 w=Y-Y,-7
O=vy +2
W=Y1-Y, -7 .
Differentiate once
0=y, +2y, -1
0=%+2%
Differentiate once
_ 5 0= BY1 —-Y,— 4
B= W+ 2% and again ...
&=3Y,-Y,~ 1, 0=3%- W&
Index 1 model! K=2y, +4y, +4z,
iIndex 2 model!

Lecture 5a: Computer Aided Modelling 1
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What is the index of this model?

Specification 1

P, Slz[Po’Pl’PB]
I Fl |:2 I:)2
Pl gt .
g X
Model i
d F-F
£ _ (R-F) * Insert F1 and F2 into Eq. 1
dt A « Differentiate Eq. 4 with
F-C, P -P, =0 respect to t
* What happens if Py, P, P,
F,—CyyP,—P; =0 are specified?

Lecture 5a: Computer Aided Modelling
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Exercise - 4 : What Is the index of this model?

System

————————————

Tank
Conservation

dH S
Q + F1h1 o thz

dt

Constitutive

Q — UA(TH _T)

h1: f(Tl’P)
h, = f(T,,P)
H =Mc,T
A= 7Dz

Lecture 5a: Computer Aided Modelling

Jacket
Conservation
oy~ Fufa, —Q

Constitutive

Q= FH Con (THi _THo)
ﬁHi = f(THi’ P)

o = f (T, P)

H, =M, C,,T,

T =Ty + T ) /2

13
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Stability of the model

«Indicated by the dynamic modes
- time constants of the system

1

T oL —

A

- related to physico-chemical phenomena
fluid flow (generally fast)
-mass transfer rates (can be slow)
-heat transfer (usually slow)
-reaction Kinetics (very fast to very slow)

Lecture 5a: Computer Aided Modelling
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Linear model analysis

Linear equation system

y'=Ay+¢

[yij B (— 2000 999.75}( ylj{looo.zsj
Y2 1 -1 Y 0
Solution given by

y, (t) = —1.449 °* +0.499 2% +1
y,(t) =—2.999 °* —0.0025 % +1

Slow mode (component) Fast mode (component)

Lecture 5a: Computer Aided Modelling
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Computing eigen-values of the J-matrix

< In MoT, write the Solution with MATLAB
ODE system; apd then » A=[-2000 999.75:1 -1];
ask for calculation of » b=eig(A)
the eigen-values
2 For problem of slide b =
13, the solution is:
1.0e+003 *
Two eigen-values
-2.0005
(-2000.5, -0.5) -0.0005

Lecture 5a: Computer Aided Modelling
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General linear system analysis

dx
a = AX, X(0) = X" Linear set of equations
X(t) = Z exp(At) Solution to the equations

n - .
At Individual component
X;(t)=) Z;¢e” : .
(1) ; i \ solution to the equations
\ — note the eigenvalues !

where: — note the eigenvectors !
n
_ 1) 0 The eigen-values
Z; —ZViJ(V )jkxk 19 .
k=1 contain the stability
Information

Lecture 5a: Computer Aided Modelling 17
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Eigen-value analysis

<« Dynamic modes determined by eigen-values of
the linear system

< Nonlinear problems must be linearised first to
get Jacobian J(y,t) on the trajectory

« Elgen-values of Jacobian computed using MoT
or MATLAB eig(A) or similar function.

Lecture 5a: Computer Aided Modelling
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Behaviour of linear systems

« Phase plane analysis illustrates motion of system
« Second order systems plot Y, VS Y, or W Yy

« Typical second order system (cf. valve actuator) :

Sety, =dy/dt=y
e aget- by =0 y, = dy,/dt = d2y/dt =y

with >0

y,+ay, +by=0
ﬂl {— a+ \/ )} Therefore,

dy/dt =y,
ﬁz—{*a_\/( b)}/z dy,/dt=-(ay, + by)

Lecture 5a: Computer Aided Modelling
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Phase plane analysis

« Several cases dependent on eigen-values

A, and A, both real and same sign

A, and A, both real but oppositesign

A, and 4, complexconjugates with non - zero real parts
A, and A, complexconjugates with zero real parts

Lecture 5a: Computer Aided Modelling
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jw X jw
stable node X T stable focus
O % - O
x ~
(a) (d)
/ w \ /'(l)
unstable node T X unstable focus
o \ - O
‘ x
(&) (e)
. / w
Jjo X .
saddle point % COnL- paine
(e X
(c) )I( ()
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General nonlinear model

+LInearize at some point y' = f (y,t)

+Obtain linear model y' — A(y — g(t)) + f (t, g(t))

<+Solution Is y(t) — Zin:l Cieﬂqtvi + 9 (t)

Derive the linear model and solution for:
dy,/dt =y, *y, + (y,)*
dy,/dt =y, + (y,)?

Lecture 5a: Computer Aided Modelling
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Stability cases
< Stable model ﬂ,i < O for alli
< Unstable model Some A will be >0

2+ Ultra-stable (“stiffy A < O

Some A "small”
Some A "large"

Lecture 5a: Computer Aided Modelling
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Stability implications for numerical solution

+ The problem determines the choice of numerical
method

<+ “Stiff” problems need special attention

< All simple explicit methods have limitations on
allowable step lengths

_method stability bound
" A

'max

h

Lecture 5a: Computer Aided Modelling
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e

NS *  Fluid zone
E ' §  Particle zone
E  Heat transfer
2 : Zone
Sold materl « Catalyst

“withdrawwn”

recovery zone

Feedsiream of reacltants

Figure 4.1 Catalytic fluidized bed reactor.

Luss, D. and Amudson, N.R. (1968). Stability of Batch Catalytic Fluidized Beds.
AIChE Journal. 14, 211.
Lecture 5a: Computer Aided Modelling
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Multiscale balance relations

d
i p, p)=d—p=p—pe+Hg(_p -p)
T
AT I]zd—T:T ~T+H,(T,-T)+H,(T,-T)
J2 P | drr e W w J T r J

dp _
f;(_pp-}).fp _): ‘4d—::HE(P_Pp )_HEK’E‘PP

ar,
Figure 4.1 Catalytic fluidized bed reactor. ‘}g (T. pp . T ] — C ? — H_T [T - Tp ) + HTFKAPP

Lecture 5a: Computer Aided Modelling
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Constitutive relations

4 av,a, co a,cv,p,
£s, £S,C. P,
(-AH )k a k_MPV
F=—— " £ =&
g
sold .IE?E q
ahV -
O H, = 2V
qe, re.q
o
K=—¢= T = 99 .
sk, gp,V

Figure 4.1 Catalytic fluidized bed reactor.

§

\
k =k, exp[%J

r

(1-¢)

-
e
F

Lecture 5a: Computer Aided Modelling
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d
ﬁ(pp~P)=d—i=p—P¢+Hg(pp—P) L
dT P
£(T,-T)=2-=T,-T+H,(T,~T)+H,(T,~T) 1’1
Micro-scale
Meso-scale
d
P -’f;(pP’P’T.P]=A£=H§(P_pr)_H§Kkpr
T
dT
S fa(T.pp.f;)=Cd—;=HT(T—I;)+HTFK?¢pP

Figure 4.3 Data-flow for the batch catalytic fluidized bed reactor.

Lecture 5a: Computer Aided Modelling
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Stability analysis

Figure 4.1 Catalytic fluidized bed reactor.

« Multiple steady states
« Unstable state

Lecture 5a: Computer Aided Modelling
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