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Lecture 4b: Advanced Computer Aided Modelling

Overview of lecture 4b

❖Origin of DPS models

❖Modelling of DPS

- Balance volumes

- Conservation balances

- Boundary and initial conditions

❖Classification of DPS model equations

❖Lumped parameter models for DPS

❖Examples
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The Origin of DPS Models
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The Origin of DPS Models: Differential form 

of conservation balances

For a conserved extensive quantity  and its related 

potential 

Flow terms:

❖ convective flows: JC = v 

❖ diffusive flows: JD = -D grad 
(assume D=constant and no cross-effect)

Co-ordinate system independent form:
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Conservation in rectangular co-ordinates
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Differential operator,  rectangular co-ordinate system

“dynamic”      “diffusion”                 “convection”     “source”

• Parabolic partial differential equation

• Induced algebraic equations

- extensive-intensive relations

- rate equations (transfer and reaction)
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Balance volumes for DPSs

❖ “Distributed” balance volumes

- uniform phase

- uniform flow pattern

❖ Size of the balance volume

❖ Shape of the balance volumes

− co-ordinate system

o rectangular

o cylindrical

o spherical
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Balance or “control” volume
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Balance Volume in rectangular co-ordinates
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Balance volume in cylindrical co-ordinates
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Balance volume in spherical co-ordinates
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Derivation of DPS models – using 

microscopic balances

❖Use of an arbitrary finite volume.

❖Consider volume reduced to a point.

❖Applicable to all geometries.

❖Transformation to other co-ordinate systems 

is possible.



12Lecture 4b: Advanced Computer Aided Modelling

Mass balance in rectangular co-ordinates

Balance volume:

Mass conservation within dV:
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Double pipe heat exchanger
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Double pipe heat exchanger (cont.)

Wall energy conservation:

In the limit:
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Packed-bed catalytic reactor

Assumptions (balances and constitutive equations)

❖ plug flow

❖ first order A  B reaction

❖ liquid bulk phase

❖ solid phase catalyst

❖ uniform in cross-section

❖ constant physico-chemical properties

❖ bulk temperature constant
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Packed-bed catalytic reactor

Model equations

Component mass

Energy

Constitutive

equations qtr = K(T-Tw)
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Spherical catalyst pellet

Assumptions (balances & constitutive equations)

❖ overall mass and volume is constant

❖ first order A  B reaction

❖ no convection

❖ uniform in all directions

❖ constant physico-chemical properties
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Spherical catalyst pellet
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Note: Constitutive equations are substituted
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Initial conditions

Set the values of the states at the initial 

time  (t = 0)

Given as a modelling assumption

Examples:

T(x,0) = f1(x) (f1(x) is given)

cA(x,0) = c0 (c0 is given)
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Boundary conditions

❖Relevant assumptions 

conditions on the boundaries

balance volume shape (coordinate system)

balance volume size (infinite)

❖Number of independent boundary conditions

along a co-ordinate direction

equal to the order of partial derivatives
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Boundary condition types

Dirichlet (1st type) condition

value set on boundary:          cA(0,t) = c*

Neumann (2nd type) condition

flux set on boundary

Robbins (3rd type) condition

convective transfer
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Packed-bed catalytic reactor

Additional assumptions

❖ initial distribution uniformly constant

❖ “very long” reactor

CA(x,0) = C* , T(x,0) = T*Initial condition

Boundary conditions
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Spherical catalyst pellet

Additional assumptions

❖ given initial conditions

❖ heat and mass transfer on the surface

Boundary conditions

at the centre

at the surface

Initial conditions            T(x,0) = h1(x) , c(x,0) = h2(x)
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Classification of DPS models
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Partial differential part of the conservation equation

Associated algebraic equation

t =  D x2 + D y2 + D z2 - vx x   - vy y  - vz z

Geometry of the 2nd order curve

- parabola:  D  0

- hyperbola (degenerate): D=0, v  0

- ellipse: steady-state, D  0
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Lumped parameter models for DPSs

Conceptual steps in lumping:

 divide balance volume into sub-volumes

 lump each sub-volume using perfect mixing

 convection  in- and out-flows of lumps

 diffusion  multidirectional in- and out-flows

 same sources for every lump

 balance equations for every lump

 boundary conditions  in- and outflows of  

lumps on system boundary
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DPS model of a double-pipe heat exchanger

Model equations

Variables

Energy balances

Initial conditions

Boundary condition



27Lecture 4b: Advanced Computer Aided Modelling

Lumped model of a double-pipe heat exchanger

Model equations

Variables

Energy balances

Initial conditions
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Modelling exercise – 4b: DPS model for a 

cylindrical catalyst (Problem II – home exercise)

Step 1: Identify the phenomena to be 

considered:

•Conduction of  mass and energy

•Reaction

•Single phase

•No accumulation

Step 2: Retrieve the general form of 

the balance volume equations:

•Select coordinate system

•Write conservation equation (in 

derivative form) for the corresponding 

coordinate system

Step 3: Generate final form of the model:

•Remove the terms not needed

•Retrieve from library the needed terms

•Add constitutive models

•Add initial and boundary conditions
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