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Overview of lecture 4b

< Origin of DPS models

« Modelling of DPS
- Balance volumes
- Conservation balances
- Boundary and initial conditions

« Classification of DPS model equations
+ Lumped parameter models for DPS
< Examples

Lecture 4b: Advanced Computer Aided Modelling
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The Origin of DPS Models: Differential form
of conservation balances

For a conserved extensive quantity @ and its related
potential ¢

Flow terms:
+ convective flows: J. =v ®

« diffusive flows: J; = -D grad ¢
(assume D=constant and no cross-effect)

Co-ordinate system independent form:

%? = D(V20(r,1)) =V o (D(r,)v(r, 1))+ G(r, 1)

Lecture 4b: Advanced Computer Aided Modelling
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Conservation In rectangular co-ordinates

Differential operator, rectangular co-ordinate system

T 2 2 2 T T T
%:D[Z%Zy%gfj_[aq)v ob b j :
X Z

“dynamic”  “diffusion” “convection”  “‘source”
» Parabolic partial differential equation
» Induced algebraic equations

- extensive-intensive relations
- rate equations (transfer and reaction)

Lecture 4b: Advanced Computer Aided Modelling
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Balance volumes for DPSs

< “Distributed” balance volumes
- uniform phase
- uniform flow pattern

« Slze of the balance volume
« Shape of the balance volumes
- co-ordinate system
o rectangular
o cylindrical
o Spherical

Lecture 4b: Advanced Computer Aided Modelling
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Balance or “control” volume

Conservation for the general balance volume

Lecture 4b: Advanced Computer Aided Modelling
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Balance Volume In rectangular co-ordinates

dy
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Balance volume In cylindrical co-ordinates

z+dz

z+dz

dz
do
2
V4
/
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Balance volume in spherical co-ordinates
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Derivation of DPS models — using
microscopic balances

« Use of an arbitrary finite volume.
« Consider volume reduced to a point.
« Applicable to all geometries.

« Transformation to other co-ordinate systems
IS possible.

Lecture 4b: Advanced Computer Aided Modelling
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Mass balance In rectangular co-ordinates

Balance volume: dV =dx.dy.dz

Mass conservation within dV:
o(M) _ o(p.dx.dy.dz) _ (v

X pvx+dx)'dy'dz + (,OVy _ pVerdy)'dX'dZ + (pvz o pvz+dz)'dx'dy

ot ot
X-direction y-direction z-direction
Divide by dx.dy.dz:
a(M) _ ap _ (pvx _pvx+dx) 4 (,OVy _p\/)/+dy) 4 (p\/Z _pvz+dz)
dvot ot dx dy dz
In the limit:
op 0 0

=NV _va =-V.pv
ot ox' * ooy Y ezt '

Lecture 4b: Advanced Computer Aided Modelling 12
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o Double pipe heat exchanger
TS TV\/(Wa")
wall
TL’Z TL,z+dz _____________
—» fluid —
inner fluid 5 |
Z s+dz

Fluid energy conservation:

OE, O(A;pc, T dz) . ]
atL — f atp L _ FhL,z _ Fh|_,2+dz +QWL =up, Cp, (Tz _Tz+dz) +U LALdZ(TW _TL)

o oT
In the limit: 2L AC, atL

oT
=—up A;C_ a—ZL_l_ULAL(TW —-T.)
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Double pipe heat exchanger (cont.)
Wall energy conservation:

0E, 9(M,cC,,T,dz)

= Qsw —Qur =hgy Adz(Ts =Ty, ) +hy, A dz(T,, —T)

ot ot
In the limit:
chpwagt) hoy A (Te =Ty )+ My A (T, —T,)
Final:
AT S BCs & ICs
aaon T.(20)= 1) ; T (20) = £,()
oty _ 1 (T, —TW)—L(TW STy TOH=TU®) t20

o Ty Twi T, (0,t)=T"(t) t=0
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Packed-bed catalytic reactor

Assumptions (balances and constitutive equations)
< plug flow

« first order A — B reaction

< liquid bulk phase

« solid phase catalyst

< uniform in cross-section

« constant physico-chemical properties
« bulk temperature constant

Lecture 4b: Advanced Computer Aided Modelling
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Packed-bed catalytic reactor
Model equations

0C 4 9*C 4 dC 4

Component mass — D _F _
ot O or
ou U oU
Energy — =K — F— — AHr, —
ot o’ O A~ Gur
~ B
Constitutive U=cppT rs=koe ®TC,

equations Ger = K(T-Tw)

Lecture 4b: Advanced Computer Aided Modelling
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Spherical catalyst pellet

Assumptions (balances & constitutive equations)
« overall mass and volume Is constant

« first order A — B reaction

< N0 convection

« uniform in all directions

« constant physico-chemical properties

Lecture 4b: Advanced Computer Aided Modelling 17



pSEfor
SPEED

Spherical catalyst pellet

Model equations in spherical co-ordinate system

Component mass  o¢ _ 1 8( 8(:] " ceRET

ot reor\ or

oT _1 0.0 kceRETAH
Energy ot r2orl or

Note: Constitutive equations are substituted

Lecture 4b: Advanced Computer Aided Modelling
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Initial conditions

Set the values of the states at the Initial
time (t=0)

Given as a modelling assumption
Examples:
T(x,0) =f1(x)  (f1(x) Is given)
ca(x,0) = co (Co IS given)

Lecture 4b: Advanced Computer Aided Modelling
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Boundary conditions

+ Relevant assumptions

+ conditions on the boundaries
+ balance volume shape (coordinate system)
o balance volume size (infinite)

<« Number of independent boundary conditions

¢ along a co-ordinate @

Irection

o equal to the order of

nartial derivatives

Lecture 4b: Advanced Computer Aided Modelling
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Boundary condition types

Dirichlet (1st type) condition
value set on boundary: ca(0,t) = c-

Neumann (2nd type) condition dc4
flux set on boundary o

T4 0,4) =0

Robbins (3rd type) condition

convective transfer dc 4
{T Ad s t} -

d

{f‘* — €4 {EM".' t}}

Lecture 4b: Advanced Computer Aided Modelling
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Packed-bed catalytic reactor

Additional assumptions
« Initial distribution uniformly constant

<+ “very long” reactor

Initial condition  Ca(X,0) = C*, T(x,0) =T*

Boundary conditions agiﬂ (L.8y =0 , C4(8,8) = fo]l
%(Li 0)=0, T(0,t)=TW

Lecture 4b: Advanced Computer Aided Modelling 29
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Spherical catalyst pellet

Additional assumptions
< given Initial conditions
< heat and mass transfer on the surface

Boundary conditions g AT

at the centre or  Or 0
dT Nu
at the surface “ar 9 (T — g1(t))
de Sh
2 = 2o gt)
Initial conditions T(X,0) = hi(x) , c(x,0) = ha(X)

Lecture 4b: Advanced Computer Aided Modelling 23
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Classification of DPS models

Partial differential part of the conservation equation

@_ (62(0 62¢+62gpj_[8ﬁ) o oD j
ot Z

Assoclated algebraic equation
t=Dx? +Dy? +D2z%2 - VX -WY -V;Z

Geometry of the 2nd order curve
- parabola: D #0
- hyperbola (degenerate): D=0, v #0
- ellipse: steady-state, D #0

Lecture 4b: Advanced Computer Aided Modelling 24
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Lumped parameter models for DPSs

Conceptual steps in lumping:
¢ divide balance volume into sub-volumes
¢ lump each sub-volume using perfect mixing
¢ convection — In- and out-flows of lumps
¢ diffusion — multidirectional in- and out-flows
+ same sources for every lump
¢ balance equations for every lump

+ boundary conditions — In- and outflows of
lumps on system boundary

Lecture 4b: Advanced Computer Aided Modelling
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DPS model of a double-pipe heat exchanger
Model equations
Variables 0<z<L , 0<t , Tplzt) , Tylz,t)
Energy balances ﬁLALﬂf% == _?LPLAIEL% + .IFLLAL(T.',“ — T_I_,}
ﬂimﬂm% — hsAsf_Ts - T-Im] - hLAL(Eu - TL]

TL(E?[}} = fl(z}
T,“[E?[}] - fﬂ[zj

Boundary condition TL[[}j t] — T'['i:'[t] for all t > 0.

Initial conditions

Lecture 4b: Advanced Computer Aided Modelling 26
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Model equations

ul

Variables (1;7), TP, k=1,2,3) , 0<¢

(k)
Energy balances d1." _ (k=1) B0\, L (k) oplE)

k=123 , T.(t)=T."(t)

a1 1
i = (1) - o (10 - 1)

k=1,2.3
Initial conditions TE‘)[[}] = f‘:' , k=1,2,3

TR0y = £ , k=1,2,3

Lecture 4b: Advanced Computer Aided Modelling
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Modelling exercise — 4b: DPS model for a

cylindrical catalyst (Problem Il —home exercise)

r

Step 1: Identify the phenomena to be

considered:

«Conduction of mass and energy

*Reaction

*Single phase

*No accumulation
dP
— =

p 10 (af)
r dr \or

s +62f 0o - 100
r2 0@  0z° ar )" rde

Step 2: Retrieve the general form of
the balance volume equations:

Select coordinate system

*\Write conservation equation (in
derivative form) for the corresponding
coordinate system

Step 3: Generate final form of the model:

*Remove the terms not needed
*Retrieve from library the needed terms
*Add constitutive models

*Add initial and boundary conditions

AT
v OZZ 1

1 0%f
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