Lecture 5

Reactor \& separation process design \& analysis

3b. Redraw flowsheet for MB-model: Redrawn flowsheet

Use only mixers, reactors, dividers and splitters!

3c. Redraw flowsheet for MB-model: Locate specified variables

If all the variables marked in blue are known, then all other variables representing the flowhseet (MB-model) can be calculated!

4a. Decide/estimate values for specified variables

$E L+W \rightarrow E A 7 \%$ conversion/pass EL to EA $\left(\eta_{1}\right)$
$P L+W \rightarrow E A 0.7 \%$ conversion/pass PL to IPA (η_{2})
$2 E A \leftrightarrow D E E+W \quad$ Equilibrium controlled, $K(T, P)=0.2$

Reactor Design \& Analysis

Design Issues: Type of reactor; number of reactor; reactor design parameters (temperature, pressure, conversion, kineticequilibrium, volume, residence time,)

Basic Steps in Reactor Design \& Analysis

* Write reactions
* Find data for the reaction (conversion, kinetic model, catalyst, ...)
* Write simple models for CSTR, Plug-Flow \& Recyle-Reactors
- Reaction rate model
- Determine required reactor volume
- Residence time
- Use kinetic or equilibrium model to fix T, P
* Verify through simulation

Basic Steps in Reactor Design \& Analysis

* Write reactions $\quad A+B=2 C$
*Write simple models for CSTR, Plug-Flow \& Recyle-
Reactors

$$
\mathrm{d}(\mathrm{Fc}) / \mathrm{dV}=\mathrm{r}(\mathrm{c}) ; \mathrm{c}(0)=\mathrm{c}_{0}
$$

*Find data for the reaction (conversion, kinetic model, catalyst, ...)

* Verify through simulation

Basic Steps in Reactor Design \& Analysis: models

$$
\begin{gathered}
\mathrm{d}(\mathrm{Fc}) / \mathrm{dV}=\mathrm{r}(\mathrm{c}) ; \mathrm{c}(0)=\mathrm{c}_{0} \\
\mathrm{dc} / \mathrm{d} \tau=\mathrm{r}(\mathrm{c}) \\
\xrightarrow[\mathrm{PFR}]{\mathrm{F}, \mathrm{c}_{0}} \xrightarrow[\mathrm{~V}, \mathrm{c}(\tau)]{\longrightarrow}
\end{gathered}
$$

Note: $\tau=\mathrm{V} / \mathrm{F}$

$$
\begin{aligned}
& d(F c) / d V=r(c) \\
& c(0)=\left(R F_{v} c_{v}+F_{0} c_{0}\right) /\left(R F_{v}+1\right) \\
& (R+1) d c / d \tau=r(c) \\
& c(0)=\left(R c_{v}+c_{0}\right) /(R+1)
\end{aligned}
$$

Basic Steps in Reactor Design \& Analysis: Volume

$\begin{aligned} & \mathrm{d}(\mathrm{Fc}) / \mathrm{dV}=\mathrm{r}(\mathrm{c}) ; \mathrm{c}(0)=\mathrm{c}_{0} \\ & \mathrm{dc} / \mathrm{d} \tau=\mathrm{r}(\mathrm{c}) \end{aligned}$	-1/r		PFR
$\begin{aligned} & \mathrm{Fc}-\mathrm{F}_{0} \mathrm{c}_{0}=\mathrm{Vr}(\mathrm{c}) \\ & \mathrm{c}-\mathrm{c}_{0}=\tau \mathrm{r}(\mathrm{c}) \end{aligned}$ $\mathrm{d}(\mathrm{Fc}) / \mathrm{dV}=\mathrm{r}(\mathrm{c})$	-1/r		CSTR
$\begin{aligned} & c(0)=\left(R F_{v} c_{v}+F_{0} c_{0}\right) /\left(R F_{v}+1\right) \\ & (R+1) d c / d \tau=r(c) \\ & c(0)=\left(R c_{v}+c_{0}\right) /(R+1) \end{aligned}$	-1/r		RR

Basic Steps in Reactor Design \& Analysis

*Find data for the reaction (conversion, kinetic model, catalyst, ...)

- Depending on the values of F, V, τ, conversion, decide the type of reactor (CSTR, PFR, RR, or network)
* Verify through simulation

Basic Steps in Reactor Design \& Analysis

What happens when there are multiple reactions?

$$
\begin{array}{ccl}
& A=B=C & \text { series } \\
\text { or, } & A+B=C ; \quad 2 A=D & \text { parallel }
\end{array}
$$

Concept of Attainable region helps to select the reactors and the optimal conversion at the highest selectivity

$$
\mathrm{dc}_{\mathrm{A}} / \mathrm{d} \tau=\mathrm{r}_{\mathrm{A}} \quad \mathrm{dc}_{\mathrm{B}} / \mathrm{d} \tau=\mathrm{r}_{\mathrm{B}}
$$

$$
d c_{B} / d c_{A}=r_{B} / r_{A} \text { for PFR }
$$

$$
\left(c_{B}-c_{B 0}\right) /\left(c_{A}-c_{A 0}\right)=r_{B} / r_{A} \text { for CSTR }
$$

For known $r_{A} \& r_{B}$, solve for C_{B} at different values of C_{A} to obtain the plot of C_{B} VS C_{A}

Basic Steps in Reactor Design \& Analysis - Multipe Reactions

Concept of Attainable region helps to select the reactors and the optimal conversion at the highest selectivity

Reactor with non-convex attainable region does not achieve the reaction that is possible or attainable

Basic Steps in Reactor Design \& Analysis - Multipe

 Reactions
Concept of Attainable region helps to select the reactors

 and the optimal conversion at the highest selectivity

$$
\mathrm{dc}_{\mathrm{A}} / \mathrm{d} \tau=\mathrm{r}_{\mathrm{A}} \quad \mathrm{dc}_{\mathrm{B}} / \mathrm{d} \tau=\mathrm{r}_{\mathrm{B}}
$$

$$
\mathrm{dc}_{\mathrm{B}} / \mathrm{dc}_{\mathrm{A}}=\mathrm{r}_{\mathrm{B}} / \mathrm{r}_{\mathrm{A}} \text { for PFR }
$$

$$
\left(c_{B}-c_{B 0}\right) /\left(c_{A}-c_{A 0}\right)=r_{B} / r_{A} \text { for CSTR }
$$

For known r_{A} \& r_{B}, solve for c_{B} at different values of c_{A} to obtain the plot of $\mathrm{c}_{\mathrm{B}} \mathrm{VS} \mathrm{c}_{\mathrm{A}}$

Reactor with non-convex attainable region (AR) does not achieve the reaction that is possible or attainable - Maximum AR must be convex, reaction vectors cannot point outward from the boundary

Design Guidelines for Reactors - 1

Design guidelines for reactors
Single irreversible reactions (not autocatalytic)
A. Isothermal-always use a plag flow reactor.
B. Adiabatic.

1. Plug flow if the reaction rate monotonically decreases with conversion
2. CSTR operating at the maximum reaction rate followed by a plug flow section

1i. Single reversible reactions-adiabatic
A. Maximum temperature if endothermic
B. A series of adiabatic beds with a decreasing temperature profile if exothermic
III. Parallel reactions-composition effects
A. For $A \rightarrow R$ (desired) and $A \rightarrow S$ (waste), where the ratio of the reaction rates is $r_{k} / r_{s}=$ $\left(k_{1} / k_{2}\right) C_{2}^{2_{2}}{ }^{-\theta_{1}}$

1. If $a_{1}>a_{2}$, keep C_{A} high.
a. Use batch or plug flow.
b. High pressure, eliminate inerts.
c. Avoid recycle of products.
d. Can use a small reactor.
2. If $a_{1}<a_{2}$, koep C_{A} low.
a. Use a CSTR with a high conversion.
b. Large recycle of products.
c. Low pressure, add inerts.
d. Need a large reactor.

Design Guidelines for Reactors - 2

B. For $A+B \rightarrow R$ (desired) and $A+B \rightarrow S$ (waste), where the ratio of the rates is $r_{X} / r_{3}=$ $\left(k_{1} / k_{2}\right) C_{i}^{-n_{1}} C_{B}^{\alpha_{1}-b_{1}}$

1. If $a_{1}>a_{2}$ and $b_{1}>b_{2}$, both C_{A} and C_{2} high.
2. If $a_{1}<a_{2}$ and $b_{1}>b_{2}$, then C_{A} low, C_{3} high.
3. If $a_{1}>a_{2}$ and $b_{1}<b_{2}$, then C_{A} high, C_{3} low.
4. If $a_{1}<a_{2}$ and $b_{1}<b_{2}$, both C_{A} and C_{3} low.
5. See Fig 6.6-1 for various reactor configurations.

TV. Consecutive reactions-composition effects
A. $A \rightarrow R$ (desired): $R \rightarrow S$ (waste)-minimize the mixing of streams with different compositions.
V. Parallel reactions-temperature effects $r_{k} / r_{s}=\left(k_{1} / k_{2}\right) f\left(C_{A}, C_{3}\right)$
A. If $E_{1}>E_{2}$, use a high temperature.
B. If $E_{1}<E_{2}$, use an increasing temperature profile.

V1. Consecutive reactions-temperature efflocts $A \stackrel{\Delta}{\rightrightarrows} R \stackrel{\text { 娄 }}{ } S$
A. If $E_{1}>E_{2}$, use a decreasing temperature profile-not very sensitive.
B. If $E_{1}<E_{2}$, use a low temperature.

Tutorial Exercise: Analysis with AR-concept

Consider the following reaction scheme

$$
\mathrm{dc}_{\mathrm{A}} / \mathrm{d} \tau=\mathrm{r}_{\mathrm{A}} \quad \mathrm{dc}_{\mathrm{B}} / \mathrm{d} \tau=\mathrm{r}_{\mathrm{B}}
$$

$$
\mathrm{dc}_{\mathrm{B}} / \mathrm{dc}_{\mathrm{A}}=\mathrm{r}_{\mathrm{B}} / \mathrm{r}_{\mathrm{A}} \text { for PFR }
$$

$$
\left(c_{B}-c_{B 0}\right) /\left(c_{A}-c_{A 0}\right)=r_{B} / r_{A} \text { for CSTR }
$$

For known r_{A} \& r_{B}, solve for c_{B} at different values of c_{A} to obtain the plot of C_{B} vS C_{A}
$k_{1 f}=0.01 ; k_{1 r}=5 ; k_{2}=10, k_{3}=100$
$r_{A}=-k_{1 r} c_{A}+k_{1 r} c_{B}-k_{3}\left(c_{A}\right)^{2} ; r_{B}=k_{1 r} c_{A}-k_{1 r} c_{B}-k_{2} c_{B}$
Find the reactor composition c_{A} where the selectivity of B is the highest with a PFR and a CSTR. Then check the residence time - temperature that gives a selectivity as close as the highest. Then work out the remaing oubssigftdessiaesfesprinciples \& Methods, L5, PSE for SPEED, Rafiqul Gani

Downstream separation design/analysis

Design Issues: Type of separator; number of separators; separator design parameters (temperature, pressure, separation factor, equilibrium, volume, residence time,)

Mechanisms of Separation

a) Phase Creation; b) Agent-based separation; c) Barrier; d) Solid agent; e) Force field or Gradient

Easy Separations

Easy separation: two phases exist at a given T and P and they have different compositions (distillation, evaporation, TP-flash, centrifuge, ...)

Separation difficulties overcome through external medium

External medium aided separation: forces differences in composition in two phases (may not be in phase equilibrium) - filtration, membrane-based separation, adsorption, ion-exchange, ...)

Deciding/selecting the design parameters for simple separations
Design Specifications for single stage separation (VLE)
Isothermal flash (T, P, F, z)
Other problems:
Bubble-point T (\mathbf{P}, \mathbf{x})
Dew-point T (T, y)

Dew-point P (T, y)
Adiabatic flash ($\mathrm{Q}=0, \mathrm{P}, \mathrm{F}, \mathrm{z}$)
Non-adiabatic flash ($\mathrm{Q}, \mathrm{P}, \mathrm{F}, \mathrm{z}$)

Variables in parenthesis needs to be specified, that is, these are design decisions

Case ${ }^{1} \xi_{n}$ and P (or 7) Fixed

Hand calculation

a. For a specified ξ_{n} and P (or T, guess T (or P).
b. Calculate $K_{k}, \alpha_{k / n}$ at specified T.
$\xrightarrow{\mathrm{F}, \underline{\mathrm{f}}} \mathrm{T}_{\substack{\text { Flash or 2-phase } \\ \text { separator }}}^{\mathrm{T}, \mathrm{P}}$

Case 2: Tand p Fixed
Using software
a. For a specified T and P, pick a key component n and guess ξ_{n}. Follow steps b, c, and dof algorithm for Case 1 .

e. If the bubbie point equation is satisfied: $\alpha=P \alpha_{k i n} / P_{k}^{0}$, stop. Otherwise, reguess ξ_{n} and go to step c. (Simple terative methods, such as the secant algorithm in Chapter 8 , can be used to obtain convergence for $\xi_{\text {. }}$.)
Case 3: 叟 and ${ }^{2}$ (or T) Fixed
\&. For a specified $\phi=V / F$ and P (or T)

Specify $\mathrm{F}, \underline{\mathrm{f}}$ and any
two of T, P, V/F, $\mathrm{v}_{\mathrm{k}} / \mathrm{f}_{\mathrm{k}}$
b. Guess T (or P), calculate $\alpha_{k n}, K_{k}$ and define $\theta=K_{n} \phi /(1-\phi) \approx v_{n} / l_{n}$

Define $\xi_{n}=\theta /(1+9)$.
Then follow steps c and d of the previous algorthm.
See example 3.2
e. If the bubble point equation is satisfied: $\alpha=\beta \alpha_{k / n} / V_{k}^{0}$, stop. Otherwise, reguess T (or P), and go to step b. (Simple iterative methods, such as the secant algorithm can be used to obtain convergence for ξ_{r})

Course: Process Design Principles \& Methods, L5, PSE for SPEED, Rafiqul Gani

Bubble Point Calculation

Here $\xi_{k}=0, \ell_{k}=f_{k}$ and $x_{k}=z_{k}$
For P fixed, calculate T direct\} from $P_{n}^{n}(T)=P / \bar{Q}_{n}$ For T fixed, calcu\}ate P from $P=\widetilde{\sigma}_{n} P_{n}^{0}(T)$
ln both cases, a is chosen as the most abundant component.

Dew Point Calculation

Here $\xi_{k}=1, v_{k}=f_{k}$ and $y_{k}=z_{k}$
For this case, we derive a dew point equation based on: $y_{k}=z_{k}$
Here $\sum_{\text {oax }} x_{k}=1 \Rightarrow K_{n} \sum_{\text {axd }} \frac{y_{k}}{K_{k}}=\sum \frac{y_{k}}{\alpha_{k \prime n}}=K_{n}$
Seiect as $k=n$ the most abundant vapor component. Then $\sum \frac{y_{k}}{a_{k / n}}=\frac{p_{n}^{0}}{p}$ and:
For Thed $\quad \rho=P_{n}^{0}(T)\left(\sum \frac{y_{k}}{\alpha_{k / n}}\right)$
Use PROII or ICAS For p fixed $\quad p_{n}^{0}(T)=p\left(\sum_{k} \frac{y_{k}}{\alpha_{k j n}}\right)$ and solve directly for T

4a. Decide/estimate values for specified variables

Divider Model
$\mu_{51}=\left(1-\xi_{5}\right) \mu_{41}$
$\mu_{52}=\xi_{5} \mu_{41}$

- Value of ξ_{5} effects the recycle flow μ_{51}
- Select a value between 0 - 0.1 (as an initial estimate

4b. Decide/estimate values for specified variables

Component Splitter model (for component k)
$\mu^{\mathrm{k}}{ }_{31}=\xi_{3 \mathrm{k}} \mu^{\mathrm{k}}{ }_{2} \quad$; vapor (or light product)
$\mu^{k}{ }_{32}=\left(1-\xi_{3 k}\right) \mu_{2}^{k}$; liquid (or heavy product)

- Use the method given in the book
- Perform a quick single flash simulation

4c. Specification/decisions for a flash unit (ethanol case study)

2. Calculate by using a vapor pressure model at specified T

3. Calculate by relative volatility w.r.t DEE at specified $\mathbf{T}=\mathbf{P}_{\mathrm{k}}^{\mathbf{0}} / \mathbf{P}^{\mathbf{0}}{ }_{\text {DEE }}$

$P^{0}(T=310 / K)$	M	$E L$	$P L$	$D E E$	E / A	$I P A$	W
$\alpha_{k / D E E}$	2.1×10^{5}	5.5×10^{4}	11360	824	114.5	75.1	47.1
$\xi_{3 K}$	256.1	67.3	13.8	1.0	0.138	0.091	0.057
	0.996	0.985	0.932	0.5	0.121	0.083	0.054

$P^{0}(T=310 / K)$	M	$E L$	$P L$	$D E E$	E / A	$I P A$	W
$\alpha_{k / D E E}$	2.1×10^{5}	5.5×10^{4}	11360	824	114.5	75.1	47.1
$\xi_{3 K}$	256.1	67.3	13.8	1.0	0.138	0.091	0.057
	0.996	0.985	0.932	0.5	0.121	0.083	0.054

 Liquid at bubble point
4. Calculate Use the formula given in the book $\xi_{3 K}$

Deciding/selecting the design parameters for absorbers

> Mass balance model for absorber/stripper has 4 degrees of freedom: P, T, key component recovery and liquid rate

That is, the designer needs to select values for the 4 variables and values of all other variables can be calculated if the component
separation (split) factors are known

Absorber and Stripper
Preliminary Calculations

Absorption Alyorithrss

\}. Select key component n, fx recovery (typically, $r=0.99$) fix P and solvent temperature.
2. Calculate L_{0} from

$$
\begin{aligned}
& A_{E}=\frac{L_{0}}{V_{N+1}} K_{n}=1.4 \\
& L_{0}=1.4 V_{N+1} \frac{P_{N}^{0}(T)}{P}
\end{aligned}
$$

Not correct

Note from this expression that L_{0} decreases with increasing pressure and decreasing temperature.
3. a. Calculate the number of stages from the Kremser equation:

$$
N=\ell_{n}\left(\frac{r \nu_{N+1}^{n}+\ell_{0}^{n}-A_{E} v_{N+1}^{n}}{\ell_{0}^{n}-A_{E}(1-r) v_{N+1}^{n}}\right) / \ln \left\{A_{E}\right\}
$$

(Note that if $r=0.99$ and $\ell_{0}^{n}=0$ then $N=10$)
3. Prepare the mass balance by calculating absorption factors and aggregate kerms for all of the remaining components by:

$$
\begin{aligned}
& A^{k}=\frac{Y_{0}}{V_{N+1}} \frac{P}{P_{k}^{0}(T)} \quad k \neq n \\
& \text { or } \quad A^{k}=\frac{1.4}{Q_{k / n}}
\end{aligned}
$$

4. Complete the mass balance for all components:

$$
\begin{aligned}
& v_{1}^{k}=\frac{v_{N+1}^{k}+\frac{\beta_{N-1}^{k}}{\beta_{N}^{k}} \ell_{0}^{k}}{\beta_{N}^{k}} \\
& \ell_{N}^{k}=\left(1-\frac{\beta_{N-1}^{k}}{\beta_{N}^{k}}\right) \ell_{0}^{k}+\left(1-\frac{1}{\beta_{N}^{k}}\right) v_{N+1}^{k}
\end{aligned}
$$

5. If necessary, readjust P or T and return to step 1 under the following conditions
a. If the temperature of ℓ_{N} is too high (check with the bubble point equation), increase L_{0}. If the final design bas significant temperature changes between the top and botom of the column, use an effective absorption factor calculates with the Edmister equation.
6. If too much solvent yaporizes in v_{2}, increase P or decrease T.
c. If too many undesirable components are absorbed, increase T, decrease P, or select a more suitable solvent for absorption.

Note: $\quad \xi_{\mathrm{A} 1, \mathrm{k}}=\mathrm{v}_{1, \mathrm{k}} / \mathrm{v}_{\mathrm{N}+1, \mathrm{k}}=1 / \beta_{\mathrm{N}-1, \mathrm{k}}=1-\xi_{\mathrm{A} 2, \mathrm{k}}$; top product

$$
\xi_{\mathrm{A} 2, \mathrm{k}}=\mathrm{l}_{\mathrm{N}, \mathrm{k}} / \mathrm{v}_{\mathrm{N}+1, \mathrm{k}}=1-\left(1 / \beta_{\mathrm{N}, \mathrm{k}}\right)=1-\xi_{\mathrm{A} 1, \mathrm{k}} ; \text { bottom product }
$$

4d. Specification/decisions for an absorber

4. Calculate use the formula given in slide $\mathbf{1 7}$ for $\xi_{42, k}$

Deciding/selecting the design parameters for simple distillation

GidGex

KYGUEXZ 3.13 Setting column pressure and temperature.

Partal Reboiler

4e. Specification decisions for distillation columns (case study)

	M	$E L$	$P L$	$D E E$	$E A$	$I P A$	W	
ξ_{k}	1.0	1.0	1.0	1.0	0.995	0.96	0.1	7.diSt

Recover 99.5\% ethanol and remove 90\% water

	M	$E L$	$P L$	$D E E$	$E A$	$I P A$	W	
ξ_{k}	1.0	1.0	1.0	0.995	0.005	0.00	0.00	8.diSt

Recover 99.5\% DEE plus gases at the top and recycle and 99.5\% Ethanol at the bottom

Ethanol-water azeotrope at 85.4% EA \& 14.6% W (mole percent)
Recover 99.5 \% azeotrope, that is, $\xi_{a z}=0.995$
9.dist

IPA in distillate is 0.1%

5. Determine a calculation strategy: Flowsheet decomposition

How should we solve the MB-model equations? How should we set-up the simulation problem for the simulator? Given, all variables marked in green, calculate all other variables
Course: Process Design Principles \& Methods, L5, PSE for SPEED, Rafiqul Gani

Design-Analysis Issues with Reactor-SeparationRecyle Systems

Assume perfect separation of A from B and C

Conversion of reactants directly related to recycle flow as well as design and operation of the reactor
$D_{a}-X_{A} /\left(1-X_{A}\right)\left[1-\alpha\left(1-X_{A}\right)\right]=0$
Where, $D_{a}=k V \rho / F_{A} \geq 1$
$X_{A}=$ conversion of A
$=$ (amount of A reacted) / (amount of A entering the reactor)
α is separation factor of A in the separator

