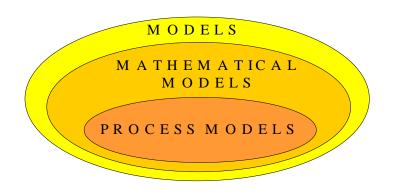


Lecture 4a: Systematic (computer) aided model generation

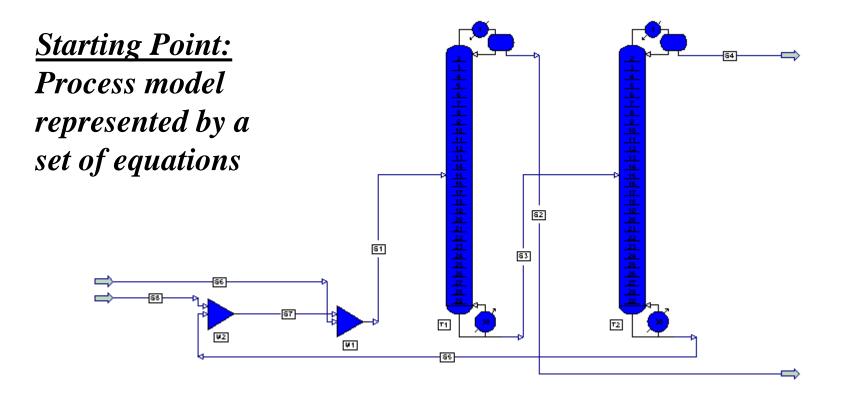
ICAS - ModDev

Rafiqul Gani CAPEC, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Lyngby


Model Construction: Separation System

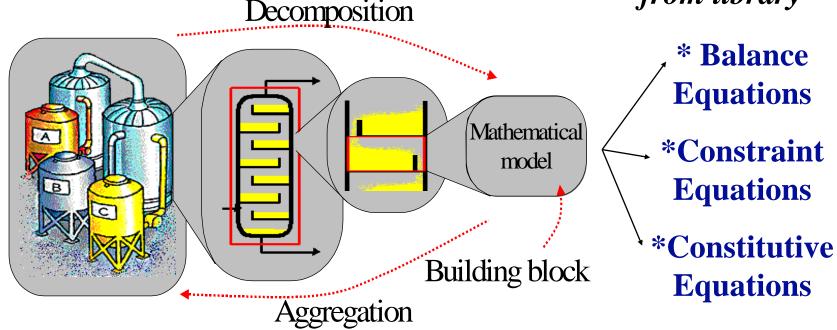
In addition to the mathematical models (and their solution), construct also models for operation, the environment and business

Model Construction Steps



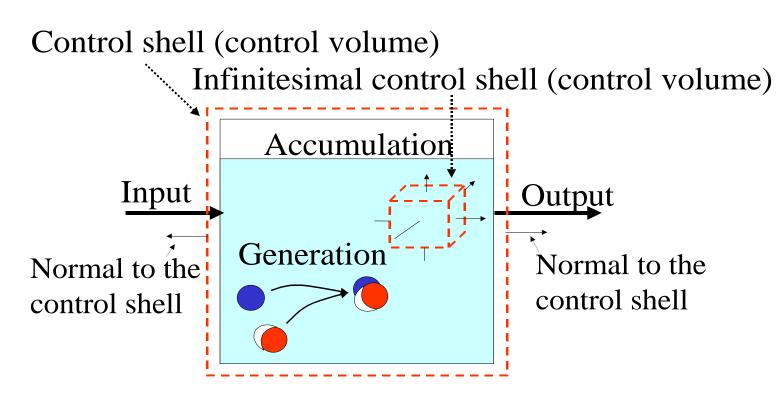
- Derive the model equations
 - Analyze model equations

• Translate the model equations to a solvable form; create library for use with a simulator or for on-line solution

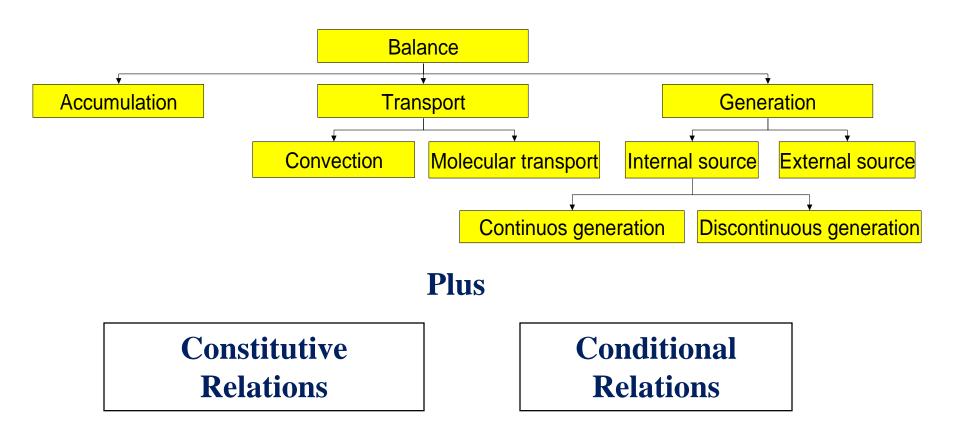

Model Generation Approaches

Generate process models of different form defined by operation/design objectives (from simulators with model libraries)

Model Generation: Another Approach


4. Extract equations from library

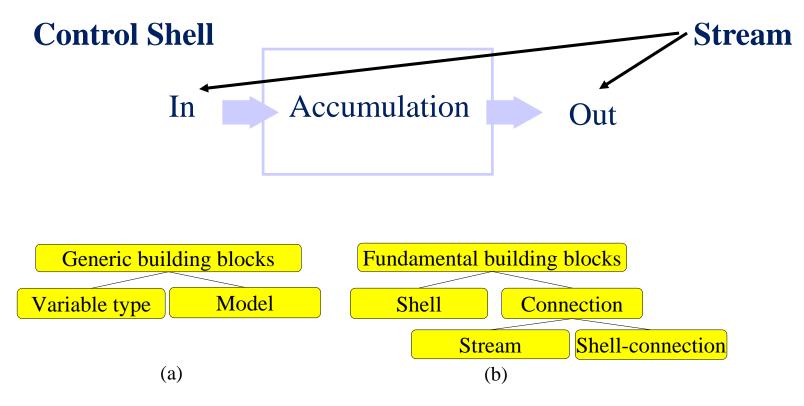
1.Define Boundary 2.Describe System 3.Identify Building Blocks


Example: Derivation of the generic form of the balance equation using an arbitrary control shell (control volume)

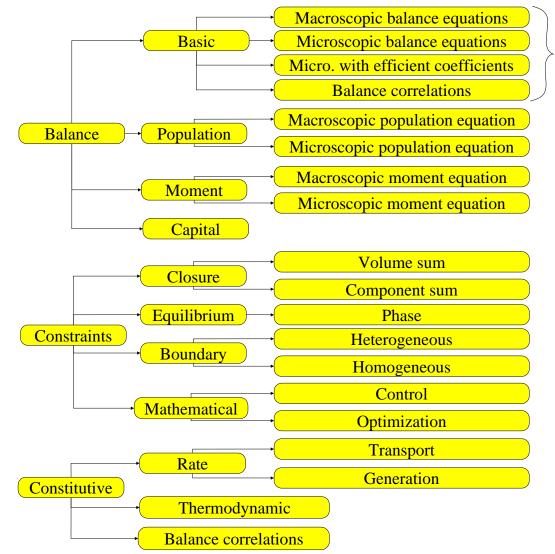
Accumulation = Input – Output + Generation

Balance Equation Generation

Model (equation) Generation

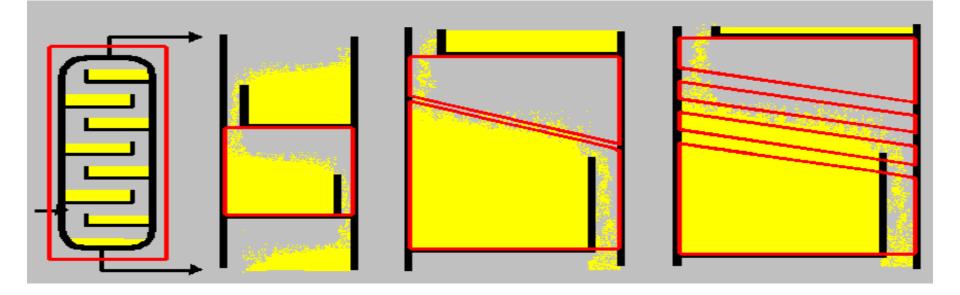

Each control shell & connection is associated to a set of model (fundamental) building blocks

Each model building block is either represented by a *Reference Model* or a generic (*Created Model*) building block (model)


Model equations available in the knowledge base Model equations not available in the knowledge base

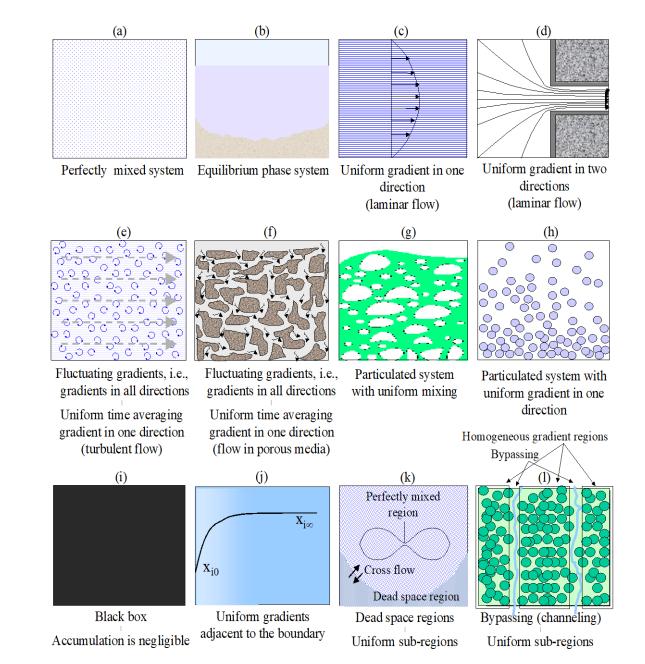
Relationship between process and model equation is established through descriptions of control shells (system boundaries) and connections

Generation of model equations for control shells

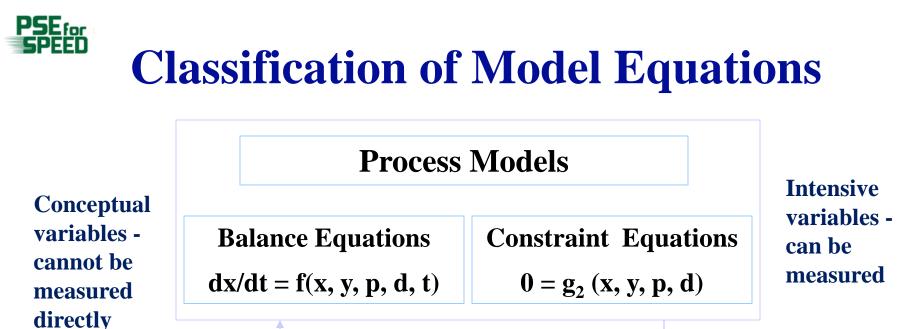

Can be transferred into balance equations for other extensive quantities by symbolic manipulation

> Retrieve matched models; otherwise, build new models

Describe control shells & connections


To model the various type of processes, the control shell must be defined such that the partial gradients (with respect to T, P and f_I) within the boundaries are either:

- Negligible
- Incorporated in an interface or overall flux model
- Dependent on some product specification (design)


Description of the control shell: **Define the** state of aggregation and phases within the system

Relationship between control volumes & balance equations

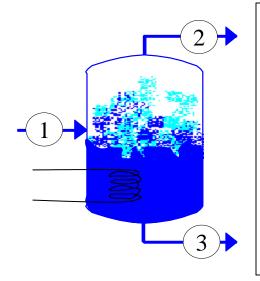
	Perfectly mixed	Homogeneous gradients	Homogeneous time averaging gradients
One region	Figure 2.4a – Figure 2.4b Macroscopic balances	Figure 2.4c – Figure 2.4d Microscopic balances	Figure 2.4e – Figure 2.4f Microscopic balances with efficient coefficients
Several	Figure 2.4i		
regions	Black-box:	Figure 2.4k - Figure 2.4l	Figure 2.4j
	The accumulation is assumed negligible and the physical description of what is happening inside the control shell is not considered (input-output model)	Combined models: Each sub-region is modele with either of the five surrounding balance combination	Boundary gradient system: Systems where the film gradients can be included in interphase flux models
Particulated	Figure 2.4g		Figure 2.4h
systems	Macroscopic balances + Macroscopic population balance OR Macroscopic balances + Macro-moment balance		Microscopic balances with efficient coefficients + Microscopic population balance OR Microscopic balances with efficient coefficients + Macro-moment balance

Constitutive equations (not rigorous) relate conceptual variables to measurable variables & species parameters. $\theta_i = f_i(T, P, \underline{x}; \underline{m})$ Mimic behaviour of the process (system) Different types of models can be obtained through different choices of the different model sub-classes

Lecture 4a: Advanced Computer Aided Modelling

Constitutive Equations/ Phenomena Models

 $\mathbf{0} = \mathbf{g}_1 \left(\mathbf{x}, \mathbf{y} \right) - \mathbf{\theta}$


θ

15

T, P, <u>x</u>; Ñ,

species

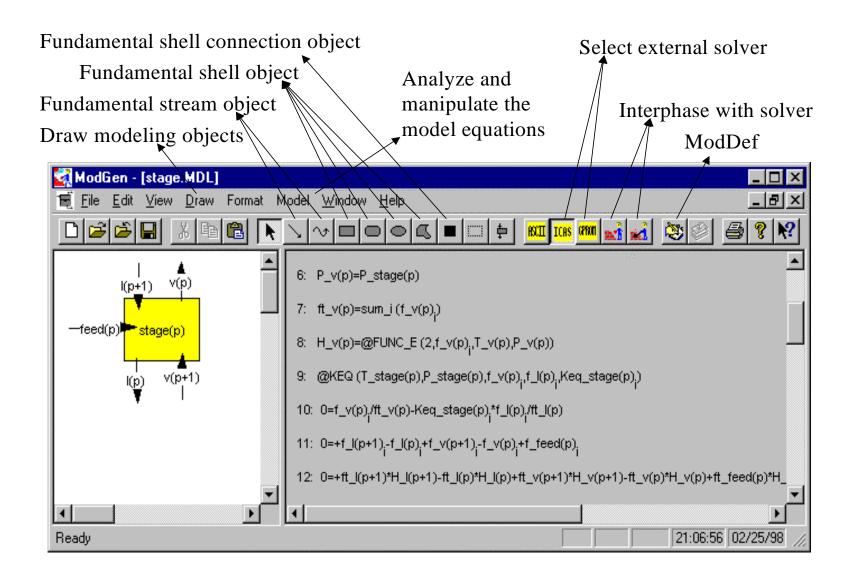
PSE Describe Problem: Steady state PT-Flash

STREAM CONNECTION OBJECT Name: 3 Models for quantities: Energy (enthalpy): H_3 =@FUNC_E(2, f_{3[]}, T_3, P_3) Models for the "from"-connection: (equilibrium) Energy connection: $T_3 = T_{flash}$ Momentum connection: $P_3 = P_{flash}$

SHELL OBJECT

Name: *flash* Assumed phase condition: *Calculate* (VL) Equilibrium model: $0 = f_{2i}/ft_2 - K_{flash} * f_{3i}/ft_{3i}$, @KEQ(T_{flash} , P_{flash} , $f_{2[]}, f_{3[]}, \#K_{flash}$)

SHELL CONNECTION OBJECT

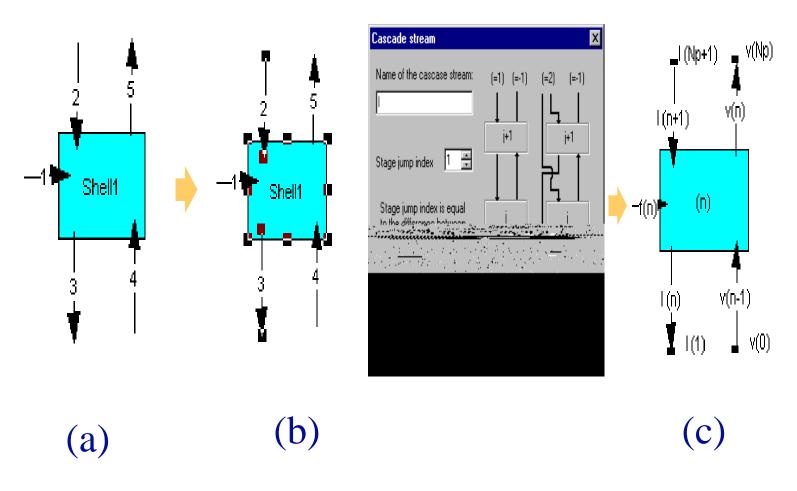

Name: *heater* Connection models: Energy connection: $Q_{heater} = Q_{flash}$ Lecture 4a: Advanced Computer Aided Modelling

Model generation through ICAS-ModDev

Describe the shell and connections of the processes to be modelled through ModDev, which will then generate the necessary model equations.

Note that for constitutive models, if the appropriate model is not present in the library, a user-supplied model would be necessary. Álso, the conditional equations may need to be supplied by the user. The model for a shell may be re-used as many times as necessary **Tools & options in ModDev (ModGen)**

PSE for **SPEED** Tools & options in ModDev (ModGen) - define shell


	ModDev - [ModDev1]		
<u> </u> 2		F <u>o</u> rmat <u>M</u> odel <u>W</u> indow <u>H</u> elp	
		🖺 📐 🗸 🗖 🗖 🏹 🔳 🔲 🕂 🕅 🖬 🚮 🛃 🎘 🖉	1 <u>8 ? R</u>
Ti		Shell description	
New Slide Slide Layout Apply Design		Name: Shell Streams: Shell connections: 1 • 2 • Lumped / distributed system • Macroscopic balance (lumped) •	Geometric description Components Reactions Mass balance Component balance Energy balance Momentum balance Variables Related variables Qther models Close
l			
-	For Help, press F1		4 06:24:19 06/03/99 //
11	◎ 重 맘 므 束 ▼ aw + ┠ ⓒ AutoShapes +	\ \ □ ○ ≅ 4 2 · 4 · ≡ = = = = = =	
	Slide 13 of 18	capec1.pot	
		Lecture 4a: Advanced Computer Aided Modelling	

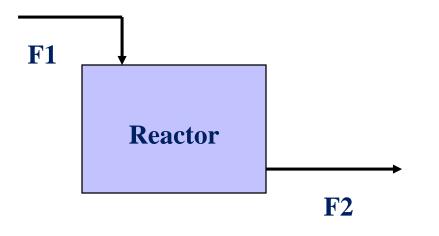
PSE for **Tools & options in ModDev (ModGen) - define stream**

	ModDev - [ModDev1]		• 🛛 🖂 😿	7 🏼 🖳 🕮 🗺 🛷 1	
		t <u>M</u> odel <u>W</u> indow <u>H</u> elp			
			■ 中 <mark>1011</mark> (8801 10	CAS 👫 🛋 🛋 🎘 5X=1	
Ti		Stream			×
Ne		Name: 🚺	Number	r of repetitions (if specified later, g	give 0): 1 📑
New Slide		- Erom phase condition	- <u>P</u> hase condition	• • • • • • • • •	<u>I</u> o phase condition
de		C Gas	O Gas	 Calculate (multi-phase) From connection 	C Gas
		O Liquid O Solid	C Liquid C Solid	 From connection To connection 	 Liquid C Solid
Slide Layout Apply Design		C Calculate	C Calculate (VLE)	Equilibrium	C Calculate
out	Shell1				
Ą	2_	Surroundings			Shell1
oly De		Connection location	<u> </u>		Connection location
sign.					
-		From connection models	Stream		To connection models
		Mass	Drop models	Quantity models	Mass
		Component			Component
		Energy	Temperature drop	Energy - Temperature	Energy
		Momentum	Pressure drop	Momentum - Pressure	Momentum
		Equilibrium connection	Known stream (all unk with the stream are se	nown variables associated et to known)	Equilibrium connection
	•	Components Rea	actions Variables	Related variables Other	models C <u>l</u> ose
	For Help, press F1				, , ,
	◯ 重 믒 므 코 ◀				D
Dr	(aw 🔻 📐 🎯 🛛 AutoShapes 🕶 🔪	X 🗆 O 🔛 4 🖄 🗸	<mark>∕</mark> • A • ≡ ≡ Ξ		
	Slide 14 of 19		c1.pot		
		Lecture 4a: Advance	ced Computer Aid	led Modelling	

Generation of cascade models

🙀 Variables 🔀						
	Mass	Energy	Momentum	Geometric	Other	
Implicit Equations	2*NC	2	0	0	0	
Unknown Var. to Specify	1	-1	0	0	0	
Unknown Variables	f_3(i).ft_4.f_5(i)	T_Jacket				
Known Variables	f_1[i],f_2[i],alpha_CSTR[m],Key[m],x_4[i]	H_1,H_2,H_4,T_CSTR,EU_Wall	P_CSTR,P_Jacket			
Parameters	nu[i][m]					
Explicit Variables	ft_1,ft_2,ft_3,f_4[i],ft_5,RC_CSTR[i],RR_CSTR[m]	H_3,H_5,T_3,T_5,Q_Wall	P_3,P_5			

Model Generation -II: Vaporiser/distillation


$d = f_{1i} (x_{i}, y_{i}, z_{i}, F, L, V); i=1,NC$ $D = f_{2} (F, L, V, h_{F}, h, H, Q)$	(1) (2)	Balance Equations
$0 = g_1(x, y, K)$	(3)	Constraint Equations
$K_{i} = g_{2i}(y, x, T, P) ; i=1,NC$ $h = g_{3}(x, T, P)$ $H = g_{4}(y, T, P)$	(4) (5) (6)	Constitutive Models

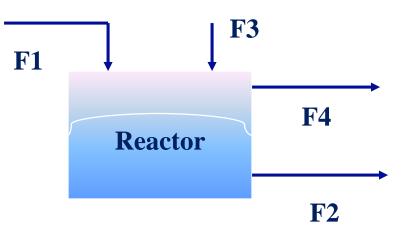
$$y_i = \frac{\alpha_{ij} x_i}{1 + x_i (\alpha_{ij} - 1)}$$

$$K_{i} = \frac{\gamma_{i} p_{i}^{S}}{P}; \gamma_{i} = f(\underline{A}_{i}, \underline{\tau}_{ij}, \underline{x}, T)$$

System identification; Constitutive model parameter estimation (generate custom models from reference) Lecture 4a: Advanced Computer Aided Modelling

Construction of an operation model

Reaction : $A \rightarrow B$


High conversion at temperature = 340 K

Batch Operation Model

- 1. Charge Feed (open F1 & close F2)
- 2. Close F1
- 3. Heat until temperature = 340 K
- 4. Control temperature at 340 K
- 5. Discharge when X_B is ≥ 0.9

6

Construction of an operation & design model

Reaction : $A \rightarrow B$

Maximum conversion of 50% A at T = 340 K

Extract B from reactor with solvent!

Solvent ID and effects need to be modeled

Batch Operation/Design Model

- 1. Charge Feed (open F1 & close F2)
- 2. Close F1

.

- 3. Heat until temperature = 340 K
- 4. Control temperature at 340 K
- 5. Charge solvent by opening F3
- 6. Extract B by opening F4

7.

Modelling exercise - 4: ModDev

Use tutorial document (tutorial-4-I.pdf) to generate a steady state mixer model; followed by a dynamic model. In tutoria-4-II.pdf, extension to a CSTR is included.