SPEED Lecture 4: Sustainable process design

Chemical product centric sustainable process design: Introduction to sustainable process design

Rafiqul Gani

PSE for SPEED Skyttemosen 6, DK-3450 Allerod, Denmark rgani2018@gmail.com

*PSEforSPEED.com

Sustainable Product-process Engineering, Evaluation & Design

SPEED Lecture 4

Problem definition; issues, concepts and definitions

SPEED Targeted sustainable process design

Identify design that matches the target

- •Start with a reference design
- •Calculate sustainability metrics, safety factors plus mass & energy indicators
- •Identify attainable design targets
 - Indicator targets (for process improvements)
 - •Driving forces targets (for generation of alternatives)
- Apply reverse approach to match design targets
- •Order all feasible solutions to find optimal (conflict resolution)

SPEED General Problem Definition

$Fobj = min \{C^{T}\underline{y} + f(\underline{x}, \underline{y}, \underline{u}, \underline{d}, \underline{\theta}) + S_e + S_i + S_s + H_c + H_p\}$ (1)

- $0 = h_1(\underline{x}, \underline{y})$ process constraints (Eq. 2)
- $0 = P(\underline{f}, \underline{x}, \underline{y}, \underline{d}, \underline{u}, \underline{\theta}) \text{ process model (Eq. 3)}$
- $\underline{\theta} = \underline{\theta}(\underline{f}, \underline{x}, \underline{y}) \qquad \text{property model (Eq. 4)}$
- $I_1 \le g_1(\underline{x}, \underline{u}, \underline{d}) \le u_1$ process variable constraints (Eq. 5)
- $I_2 \le g_2(\underline{x}, \underline{y}) \le u_2$ molecular structure constraints (Eq. 6)
- **B** $\underline{\mathbf{x}} + \mathbf{C}^{\mathsf{T}}\underline{\mathbf{y}} \ge \mathbf{D}$ process networks (Eq.7)

<u>x</u>: real-process variables; <u>y</u> integer-decision variables;
 u: process design variables; d: process input variables;
 θ: property; B, C, D coefficient matrices

SPEED Issues: Models and relationships

Models: **Process/property** $d\underline{x}/dt = f(\underline{f}, \underline{u}, \underline{d}, \underline{\theta}, \underline{x})$ $\mathbf{y} = \mathbf{g}(\mathbf{x})$ $\underline{\beta} = \beta (\underline{C}, \underline{f}, \underline{x})$ **Sustainability Metrics** $\underline{S}_{e} = S_{e} (\underline{f}, \underline{u}, \underline{x}, \underline{y}, \underline{d}, \underline{\theta})$ $\underline{\mathbf{S}}_{i} = \mathbf{S}_{i} (\underline{\mathbf{C}}, \underline{\mathbf{f}}, \underline{\mathbf{x}}, \underline{\mathbf{y}}, \underline{\theta})$ $\underline{S}_{s} = S_{s}$ (size, profit, ?) **Safety & Hazards** $\underline{H}_{c} = Hc (\underline{C}, \underline{f}, \underline{x}, \underline{y}, \underline{d}, \underline{\theta})$ $\underline{Hp} = H_{p} (\underline{u}, \underline{f}, \underline{x}, \underline{d}, \underline{\theta})$

SPEED Issues: System boundary definition

SYSTEM (from 'cradle to grave')

SPEED Issues: Measure of sustainability

Chemical product centric sustainable process design - Lecture 4

SPEED Issues: Measure of sustainability

Sustainability Metrics: Energy

Total Net Primary Energy Usage Rate = Imports – Exports (GJ/y) Percentage Total Net Primary Sourced from Renewals (%) Total Net Primary Energy Usage Rate per kg Product (kJ/kg) Total Net Primary Energy Usage per Unit Value Added (kJ/\$)

Sustainability Metrics: Material

Total raw materials used per kg product (kg/kg) Total raw materials used per unit value added (kg/\$) Fraction of raw materials recycled within company (kg/kg) Fraction of raw materials recycled from consumers (kg/kg) Hazardous raw material per kg product (kg/kg)

Sustainability Metrics: Water

Net water consumed per unit mass of product (kg/kg)

Net water consumed per unit value added (kg/\$)

Azapagic , *Sustainable Development Progress Metrics*, IChemE Sustainable Development Working Group, IChemE, Rugby, UK, 2002

Chemical product centric sustainable process design - Lecture 4

Example: The IChemE Model

SPEED Measure of environmental impact - I

US-EPA Model

$$I = \Sigma_i \alpha_i \ \Sigma_j M_j \ \psi_{ij}$$

M_j = mass flow rate of chemical *j* (mass/time)

 α_i = weighting factor for impact category *i*

ψ_{ij} = chemical and category specific impact (PEI/mass)

SPEED Measure of environmental impact - II

Atmospheric, Aquatic & Land Impacts

Physical potential impacts (acidification, greenhouse enhancement, ozone depletion and photochemical oxidant depletion)

Human toxicity effects (air, water and soil) and eco-toxicity effects (aquatic and terrestrial)

The important parameters are:

HTPI (Human Toxicity Potential by Ingestion)

HTPE (Human Toxicity Potential by Exposure both Dermal and Inhalation)

TTP (Terrestrial Toxicity Potential)

ATP (Aquatic Toxicity Potential)

GWP (Global Warming Potential)

ODP (Ozone Depletion Potential)

PCOP (Photochemical Oxidation Potential)

AP (Acidification Potential)

Total PEI Total Potential Environmental Impact), which indicates the unrealised effect or impact that the emission of mass and energy would have on the environment on average

SPEED Measure of safety: DOW safety index

Total Inherent Safety Index (ISI)												
<u>Chemical Inherent Safety Index, I_{ci}</u>	<u>Score</u>	Process Inherent Safety Index, Ici	<u>Score</u>									
Sub-indices for reactions Hazard	S	Sub-indices for process cond	litions									
Heat of the main reaction, I _{rm} 0-4 Inventory, I _i												
Heat of the side reactions, I_{rs}	0-4	Temperature, I _T	0-4									
Chemical interactions, I _{int}	0-4	Pressure, I _P	0-4									
Sub-indices for Hazards substance	es	Sub-indices for process conditions										
Flammability, I _{fl}	0-4	Equipment, I _{eq}										
Explosiveness, I _{ex}	0-4	I _{Isbl}	0-4									
Toxicity, I _{tox}	0-6	I _{Osbl}	0-3									
Corrosivity, I _{cor}	0-2	Process structure, I _{st}	0-5									
Maximum, I _{ci} score	28	Maximum, I _{pi} score	25									
М	aximum, I	_{Si} score 53										

SPEED Definition: Indicators (mass & energy)

Indicator	Description	Definition
MVA	Material Value Added	$MVA = M_{T}^{*}(P_{sale} - P_{cost})$
EWC	Energy & Waste Cost	$EWC = E P_E M_i \theta_i / (\Sigma_i M_i \theta_i)$
TVA	Total Value Added	TVA = MVA - EWC
RQ	Reaction Quality	$RQ = R_X \theta_R / (\Sigma_p M_p)$
AF	Accumulation Factor	$AF = M_{i\text{-cycle}} / (\Sigma_{k\text{-cycle}} M_{k\text{-cycle}})$
REF	Reusable Energy Factor	REF = E _{used-cycle} / E _{exit-cycle}
DC	Demand Cost	$DC = P_{utility}E_{open-path}$
TDC	Total Demand Cost	$TDC = \Sigma DC_k$

Chemical product centric sustainable process design - Lecture 4

SPEED Definition: Indicators (batch operations)

Indicator	Description	Operation	Definition						
FVF	Free Volume Fraction	All	$FVF = rac{V_{equi} - \sum\limits_{i}^{I} rac{F_{AP}^{(i)}}{ ho(i)}}{V_{equi}}$						
		Mixer $TF_{j,i} = \frac{1}{\frac{F_{AP}^{(c)}}{\sum\limits_{co}^{CO} F_{AP}^{(co)}}} \times \frac{t_j}{t_{total}}$							
TF	Time Factor	Reactor	$TF_{j,i} = x \left(\frac{1}{\frac{F_{AP}^{(c)}}{\upsilon^{(c)}}} \times \frac{t_j}{t_{total}} \right) + \left(1 - x\right) \left((1 - z) \frac{1}{\frac{F_{AP}^{(c)}}{\upsilon^{(c)}}} \times \frac{t_j}{t_{total}} \right)$						
		Heat Exchanger	$TF_{j,i} = rac{F_{AP}^{(c)} imes cp^{(c)}}{\sum\limits_{co}^{CO} F_{AP}^{(co)} imes cp^{(co)}} imes rac{t_j}{t_{iotal}}$						
		Separation	$TF_{j,i} = \frac{F_{AP}^{(c)}}{\left \Pr operty^{R} - \Pr operty^{C}\right } \times \frac{t_{j}}{t_{total}}$						
		Mixer	$EF_{j,i} = \frac{F_{AP}^{(c)} \sum_{h}^{H} \Delta \rho_{i}^{(c)}}{\sum_{n}^{N} F_{AP}^{(c)} \sum_{h}^{H} \Delta \rho_{h}^{(c)}} \times \frac{E_{j}}{\sum_{j}^{J} E_{j}}$						
FF	Energy Factor	Reactor	$EF_{j,i} = F_{AP}^{(c)} \times \Delta H_{R} \left(y \times \left(x \times \frac{\Delta H_{f}}{\sum_{\infty}^{CO} \Delta H_{f}^{(co)}} + (1-x) \left(1 - \frac{\Delta H_{f}}{\sum_{\infty}^{CO} \Delta H_{f}^{(co)}} \right) \right) + (1-y) \left(x \times \frac{\Delta H_{f}}{\sum_{\infty}^{CO} \Delta H_{f}^{(co)}} \left(1 - \frac{\Delta H_{f}}{\sum_{\infty}^{CO} \Delta H_{f}^{(co)}} \right) + (1-x) \frac{\Delta H_{f}}{\sum_{\infty}^{CO} \Delta H_{f}^{(co)}} \right) \right) \times \frac{E_{j}}{\sum_{j}^{CO} E_{j}} \left(1 - \frac{E_{j}}{\sum_{\infty}^{CO} \Delta H_{f}^{(co)}} \right) + (1-x) \frac{E_{j}}{\sum_{\infty}^{CO} \Delta H_{f}^{(co)}} \right) $						
		Heat Exchanger	$EF_{j,i} = \frac{F_{AP}^{(c)} \times cp^{(c)}}{\sum_{co}^{CO} F_{AP}^{(co)} \times cp^{(co)}} \times \frac{E_j}{\sum_{j}^{J} E_j}$						
		Separation	$EF_{j,i} = \frac{F_{AP}^{(c)} \times \Pr operty^{(c)}}{\sum_{co}^{CO} F_{AP}^{(co)} \times \Pr operty^{(co)}} \times \frac{E_{j}}{\sum_{j}^{I} E_{j}}$						

SPEED Definition: Open & closed paths

Continuous Process

Batch Process

SPEED Lecture 4

Indicator Based Method for Generation of Sustainable Process Alternatives

SPEED Overview of the Methodology

SPEED Methodology: Overview

SPEED Analysis of Indicators

Identify the target indicators

Indicator	Negative value	Positive value											
MVA	Value lost in path	Value gained in path											
RQ	Negative impact on plant productivity	Positive impact on plant productivity											
TVA	High potential for improvement	Low potential for improvement											
	Low value	High value											
EWC	Low energy & waste reduction	High energy & waste reduction											
	potential	potential											
AF	Low accumulation of component	High accumulation of component											
EAF	Low energy utilization	High energy utilization											
TDC	Low energy loss	High energy loss											

REF	Represents the amount of reusable energy	Increase
	with respect to the total recycled energy	
DC	Represents the associated cost for an energy open path	Decrease
TDC	Represents the total cost associated with an output from a process	Decrease

4

SPEED Defining targets for improvement

Indicators – variables - objective

Chemical product centric sustainable process design - Lecture 4

	Known varia												ab													
								P	roc	es	s r	ela	ted	va	ria	ble	s									
Identify the process (design) variables that effect the targetted mass & energy indicators	m ^b , mass flowrate burned (1)	${f V}_{ m J}$, effluent volumetric flowrate (1)	m ^{fp} , final product's mass flowrate (1)	\mathbf{m}_{z}^{P} , mass of component in recycle (1)	fi _{.a} P mass flowrate leaving recycle(1)	d.,op ^P mass of component leaving recycle (1)	\mathbf{m}_{z}^{rm} , mass of component in recycle (1)	fi _{.a} rm mass flowrate leaving recycle (1)	d _{i.op} rm mass of component leaving recycle(1)	m ^w , water mass flowrate (1)	ebl _{ec} , energy based level (en. recycle) (1)	f _{i.a} h energy flowrate leaving recycle(1)	di _{.op} h energy flowrate leaving recycle (1)	EOP _{s,d} energy flowrates (1)	\mathbf{Q}_{uc} , cooling duties (1)	Qu, utility duties (incl. cooling) (1)	T_m , mean temperature (1)	p _m , mean pressure (1)	p ^{max} ,maximum pressure (1)	t ^{max} , maximum temperature (1)	${f t}_{n}{}^{w}$, cooling water's inlet temperature (1)	\mathbf{t}_{out} ", cooling water's outlet temperature (1)	A e, allocation factor (he, ΔHu a , ρ) (1)	p., mean density (1)	ţr _{.rk.k} reaction/s extend (1)	Er.rk.k reaction parameter (1)
Mass Indicators																										
MVA =f(m ^m ,m ^p ,m ^b ,PP ,PR ^m ,M ^c ,η ^c , ΔH _{comb} ,ΔH _{шар} ^{H2O} ,PS)	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$EC = f(m^m, m^p, A_c, PE_t, Q_t, T_m, p_m)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	0	0	0
WC = f(m ^m ,m ^p ,ρ ₁ ,V ₁ ,WAV _q ,WAM _q ,WAC _q)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
EWC = f(EC, WC)	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	1	1	0	미
TVA = f(MVA, EWC)	0	?	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	-1	-1	0	0	0	0	-1	-1	0	0
$RQ = f(\xi_{r,tk,k}, E_{r,tk,k}, m^{P}, M^{C})$	0	0	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
$AF = f(m_z^{m}, f_{la}^{m}, d_{lop}^{m}, m_z^{P}, f_{la}^{P}, d_{lop}^{P})$	0	0	0	1	-1	-1	1	-1	-1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Energy Indicators	-	-			-		_							_		_	_		-		_	_	_	_	_	
$REF = f(ebl_{ec}, f_{la}, d_{lop})$				<u> </u>	U		U	U	U	U	1	-1	-1		U	U	U	U	U	<u> </u>						븻
$DU = T(PE_s, EUP_{s,d})$		U	U	-	U	U	U	U	0		U	U	0	1	U	U	U	U	U	-	<u> </u>	<u> </u>		<u> </u>		븻
	U	U	U	U	U	U	U	U	U	U	U	U	U	1	U	U	U	U	U	U	U	U	U	U	U	υI
Constanting Little (Constant on the constant of the constant o																										

			<u>Kr</u>	IOW	י n/	var	iab	les																		ļ
										P	rice	es a	& C)th	er					Pro	ce	SS	un	<u>rel</u> :	ate	<u>d </u>
Identify the process variables that effect the sustainability metrics	t ^{max} , maximum temperature (1)	$\mathbf{t}_{h}{}^{w}$, cooling water's inlet temperature (1)	$\mathbf{t}_{\mathrm{out}}{}^{\mathrm{w}}$, cooling water's outlet temperature (1)	\mathbf{A}_{c} , allocation factor (hc, $\Delta H_{uen, p}$) (1)	p., mean density (1)	ξr.rk.k reaction/s extend (1)	E _{r.rk.k} reaction parameter (1)	PP, comp sales price (1)	PR, comp. purchase price (1)	PR ^m , raw materials purchase price (1)	PS, steam price (generated) (1)	PEu, utily prices(1)	\mathbf{WAV}_{e_j} , volume specificallocation cost (1)	WAMe1, mass specificallocation cost (1)	WAC_{ej} , concentration specific allocation cost (1)	η _e energy conversions efficiency(1)	$m{\eta}^{ extsf{e}}$, combustion efficiency (1)	ΔH _{comb} , combustion heat	M °, molecular weight	ΔH _{'aP} ^{H2O} , vaporization heat	${f \Delta} {f H}_{r}$,heat of main reaction/s	${f \Delta} {f H}_{ m r}$,heat of side reaction/s	H _f , heat of formation	PEL, unit potential environment impact	P, flash point	UEL,upper explosion limit
Sustainability (Energy metrics)																										
TNPEUR = f(Q ₁ , η _e , ΔH _r , ΔH _{comb} ^c , ΔH _{uap} ^{H20} , m ^b ,m ^m)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	Х	0	Х	Х	0	0	0	0	0
TNPEUR/KgProd = $f(Q_{i}, \eta_{e}, \Delta H_{r}, \Delta H_{comb}^{c}, \Delta H_{uap}^{H2O}, m^{b}, m^{p}, m^{m})$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-1	0	Х	0	Х	Х	0	0	0	0	0
$TNPEUR/VA = f(Q_{\mathfrak{l}}, \eta_{\mathfrak{e}}, \Delta H_{r}, \Delta H_{comb}^{\circ}, \Delta H_{Lep}^{H20}, m^{b}, m^{p}, PP^{p}, m^{m}, PR^{m}, PE_{\mathfrak{l}})$	0	0	0	0	0	0	0	-1	0	1	0	1	0	0	0	-1	0	Х	0	Х	Х	0	0	0	0	0
Sustainability (Material metrics)																										
TRMU/kgProd = f(m ^m , m [‡])	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TRMU/\$VA = f(m ^m , m ^p , PR ^m , PE ₁ , Q ₁ , PP)	0	0	0	0	0	0	0	-1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$FRMR = f(m^m, m_z^m f_{la}^m, d_{lop}^m)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
HRM/kgProd = f(m ^m , m ^p)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sustainability (Water)																										
NWC/kgProd = $f(Q_{tc}, t_h^{w}, t_{ott}^{w}, m^{w}, m^{p})$	0	1	Х	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
NWC/\$VA = f($Q_{to}, t_{h}^{w}, t_{ott}^{w}, m^{w}, m^{m}, PR^{m}, PE_{t}, Q_{t}, PP, m^{P}$)	0	1	Х	0	0	0	0	-1	0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
WAR algorithm																										

Identify the process variables that effect the environmental impact factors

 $I = \Sigma_i \alpha_i \ \Sigma_j M_j \ \psi_{ij}$

 M_j = mass flow rate of chemical *j* (mass/time)

 α_i = weighting factor for impact category *i*

 ψ_{ij} = chemical and category specific impact (PEI/mass) Identify: Chemicals that cause the impact I to be high

Solution: Replace the chemical or reduce the flowrate

	var	iab	les																							
					Ρ	rice	es (& (Dth	er					Pro	ce	ss	un	rel	ate	d٧	ari	abl	es		
Identify the process variables that effect the safety factors	ξ _{r.rk.k} reaction/s extend (1)	Er _{urkuk} reaction parameter (1)	PP, comp sales price (1)	PR, comp. purchase price (1)	PR ^m , raw materials purchase price (1)	PS, steam price (generated) (1)	PE _u , utily prices (1)	WAVe, volume specificallocation cost (1)	WAMe1, mass specificallocation cost (1)	$\ensuremath{\text{WM}}\ensuremath{C_{\text{cl}}}\xspace$ concentration specific allocation cost (1)	η _e energy conversions efficiency(1)	${f \eta}^{ m c}$, combustion efficiency (1)	ΔH comb, combustion heat	M° , molecular weight	ΔH ^{wp H2O} , vaporization heat	Δ H r,heat of main reaction/s	${f \Delta} {f H}_{ m r}$,heat of side reaction/s	H ₄ , heat of formation	PEL, unit potential environment impact	P, flash point	UEL,upper explosion limit	LEL, lower explosion limit	TLV, threshold, limit value	SBL steel's breakage limit	equipment type	experienced-based data
Safety Indicators																										
$I_m = f(\Delta H_r^m)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	0	0	0	0	0	0
$I_{rs} = f(\Delta H_r^{s})$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	х	0	0	0	0	0	0	0	0	0
$I_{ht} = f(H^{\dagger})$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Х	0	0	0	0	0	0	0	0
$I_n = f(f^n)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	0	0	0	0	0	0
l _{ex} = f(UEL, LEL)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	Х	0	0	0	0
$I_{tox} = f(TLV)$	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	0	0	0
l _{oor} =f(SBL)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	x	0	0
l₁=f(m ^m ,m [₱])	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
lp=f(p ^{max})	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
It=f(t ^{max})	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I _{sbl} =f(equipment type)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	0
O _{sbl} =f(equipment type)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	X	0

SPEED Generate sustainable design alternatives

Chemical product centric sustainable process design - Lecture 4

SPEED Application Example: MTBE Process

SPEED Application Example: MTBE Process

Energy, water, material, environmental impact and economic metrics Total metrics= 23

Safety index = 30

Through an algorithm determinations of the indicators which have more influence in the profit- Cycle path C19

SPEED Generate (design) process alternatives

Results of the sensitivity analysis

A set of indicators; their target values; the process variables that can be changed to achieve the target; the sustainability metrics that would be affected; the environmental impact factors that would be affected; the safety factors that would be affected

Each set of changed process variables corresponds to a generated sustainable process alternative

SPEED Compare measures of sustainability

Reduce 20% water in recycle

- \leftrightarrow
- Constant efficiency 99.9 % (methanol, water)
- 1
- 14.4 % and 20.0 % reduction of AF, and EWC

- Insignificant increase MVA values for paths O3, O4, O5, O9, O13 and O18
- Safety Index constant

Energy and water sustainability metrics decrease 3% and 4 %

Global impact almost constant

Gross margin increase 1.6%, but the increase in the profit will be greater due to the reduction in investment costs

SPEED Software: SustainPro

SPEED Software issues: Supply of needed data (θ)

- Cost data (prices of materials, chemicals, ..)
- Equipment sizing & costing data
- Utility availability, cost, ...
- Property model parameters
- Kinetic model parameters
- Reconciliation of data (comes from different sources)

SPEED Software issues: Availability & accuracy of models

- Property prediction models
- Enviornmental impact calculations
- Reaction rates/conversion calculations
- Energy estimates
- Cost models
- Planning models
- Operation models
- •

SPEED SustainPro Software

SPEED Case Study: HDA Process (step 1)

Hydrogen reacts with Toluene to produce Benzene. Methane is present as impurity and Biphenyl is produced as a by-product

SPEED HDA process: Step 2

Process flowsheet: Open & closed paths

4

SPEED HDA process: Step 3

Mass Indicators

Indicators f	or open path	IS			-		
Open path a	Component	Path	Flowrate (kg	RQ	MVA $(10^3 $ \$	EWC $(10^3 $ \$	TVA (10 ³ \$/yr)
O1	Methane	sMI1,ip-dPU,op	195.72	0.000	321.30	7.19	314.10
O2	Hydrogen	sMI1,ip-dPU,op	244.30	1.037	-2947.75	33.99	-2981.74
O3	Benzene	sRC,ir-dPU,op	134.57	0.000	-78.43	0.30	-78.72
O4	Biphenyl	sRC,ir-dPU,op	0.00	0.000	0.00	0.00	0.00
O5	Toluene	sMI1,ip-dPU,op	18.33	1.037	-18.50	0.43	-18.93
O6	Methane	sRC,ir-dPU,op	1887.71	0.000	-8747.91	7.78	-8755.70
O7	Methane	sMI1,ip-dDS,op	10.78	0.000	17.70	0.40	17.30
O8	Hydrogen	sMI1,ip-dDS,op	1.35	1.060	-16.31	0.19	-16.49
O9	Benzene	sRC,ir-dDS,op	3.80	0.000	-2.22	0.44	-2.66
O10	Biphenyl	sRC,ir-dDS,op	0.00	0.000	0.00	0.00	0.00
O11	Toluene	sMI1,ip-dDS,op	0.00	1.011	0.00	0.00	0.00
O12	Methane	sRC,ir-dDS,op	103.99	0.000	-481.88	0.43	-482.31
O13	Benzene	sRC,ir-dDB,op	9348.60	0.000	14629.37	626.29	14003.08
O14	Biphenyl	sRC,ir-dDB,op	0.00	0.000	0.00	0.00	0.00
O15	Toluene	sMI1,ip-dDB,op	2.68	1.037	-6.42	0.20	-6.62
O16	Benzene	sRC,ir-dDT,op	0.00	0.000	0.00	0.00	0.00
O17	Biphenyl	sRC,ir-dDT,op	207.23	0.000	-13.41	266.80	-280.21
O18	Toluene	sRC,ir-dDT,op	0.38	1.037	-0.38	0.58	-0.96
019	Hydrogen	sMI1,ip-dRC,or	247.66	1.037	not defined	28.83	-28.83
O20	Toluene	sMI1,ip-dRC,or	11442.91	1.037	not defined	243.07	-243.07

SPEED HDA process: Step 3

Mass Indicators

Indicators f	or mass cyc	le paths					
Cycle path -	Component	Path	Flowrate (kg	AF	RQ	EWC $(10^3 \$$	TVA (10 ³ \$/
C1	Methane	Gas cycle	10926.69	4.878	0.00	484.53	-484.53
C2	Hydrogen	Gas cycle	1281.22	5.205	1.06	179.40	-179.40
C3	Benzene	Gas cycle	705.75	0.054	-0.03	16.00	-16.00
C4	Biphenyl	Gas cycle	0.01	0.000	0.03	0.00	0.00
C5	Toluene	Gas cycle	96.16	0.019	1.04	2.28	-2.28
C6	Methane	Liquid cycle	0.00	0.000	0.00	0.00	0.00
C7	Hydrogen	Liquid cycle	0.00	0.000	1.04	0.00	0.00
C8	Benzene	Liquid cycle	94.41	0.007	-0.03	51.81	-51.81
C9	Biphenyl	Liquid cycle	0.00	0.000	0.03	0.00	0.00
C10	Toluene	Liquid cycle	3695.37	2.515	1.04	1828.87	-1828.87
C11	Methane	Quench cycle	41.94	0.003	0.00	0.17	-0.17
C12	Hydrogen	Quench cycle	0.49	0.000	0.00	0.01	-0.01
C13	Benzene	Quench cycle	3452.12	0.336	0.00	7.67	-7.67
C14	Biphenyl	Quench cycle	75.73	0.365	0.00	0.29	-0.29
C15	Toluene	Quench cycle	1351.51	0.354	0.00	3.14	-3.14
SPEED HDA process: Steps 4-5

Locate the process variable that can satisfy the target indicators

SPEED HDA process: Step 6

Generated sustainable design alternative

SPEED HDA process: Evaluate new alternative

Indicators	for open path	18					
Open path :	Component	Path	Flowrate (kg	RQ	MVA (10 ³ \$	EWC $(10^3 \$)$	TVA (10 ³ \$/yr)
01	Methane	sMI1,ip-dPU,op	103.3000	0.0000	169.5000	2.9470	166.5000
O2	Hydrogen	sMI1,ip-dPU,op	0.6210	1.0430	-7.4880	0.0670	-7.5500
03	Benzene	sRC,ir-dPU,op	134.5682	0.0000	0.0000	0.0000	0.0000
O4	Biphenyl	sRC,ir-dPU,op	0.0028	0.0000	-0.0002	0.0000	-0.0002
05	Toluene	sMI1,ip-dPU,op	0.0220	1.0220	-0.0022	0.0004	-0.0020
06	Methane	sRC,ir-dPU,op	1960.0000	0.0000	-9085.0000	6.4490	-9092.0000
07	Methane	sMI1,ip-dDS,op	1.8070	0.0000	2.9600	0.0052	2.9140
08	Hydrogen	sMI1,ip-dDS,op	2.2200	1.0430	-26.8000	0.2400	-27.0400
09	Benzene	sRC,ir-dDS,op	3.8600	0.0000	-2.2500	0.1660	-2.4200
O10	Biphenyl	sRC,ir-dDS,op	0.0000	0.0000	0.0000	0.0000	0.0000
011	Toluene	sMI1,ip-dDS,op	0.0028	1.0430	-0.0029	0.0004	-0.0032
012	Methane	sRC,ir-dDS,op	34.3100	0.0000	-159.0000	0.1130	-159.1000
013	Benzene	sRC,ir-dDB,op	9505.0000	0.0000	14870.0000	629.3000	14240.0000
014	Biphenyl	sRC,ir-dDB,op	0.0000	0.0000	0.0000	0.0000	0.0000
015	Toluene	sMI1,ip-dDB,op	2.7200	1.0220	-6.5380	0.1900	-6.7270
016	Benzene	sRC,ir-dDT,op	0.0000	0.0000	0.0000	0.0000	0.0000
017	Biphenyl	sRC,ir-dDT,op	200.7000	0.0000	-12.9900	267.2000	-280.2088
O18	Toluene	sRC,ir-dDT,op	0.3880	1.0220	-0.3920	0.6070	-0.9980
019	Hydrogen	sMI1,ip-dRC,or	248.0000	1.0430	not defined	22.1900	-22.1900
O20	Toluene	sMI1,ip-dRC,or	11460.0000	1.0220	not defined	187.9000	-187.9000

Mass indicators value for the open paths in the alternative design

SPEED HDA process: Evaluate new alternative

Indicators for mass cycle paths							
Cycle path :	Component	Path	Flowrate (kg	AF	RQ	EWC $(10^3 \ \$)$	TVA (10 ³ \$/
C1	Methane	Gas cycle	0.0000	0.0000	0.0000	0.0000	0.0000
C2	Hydrogen	Gas cycle	1338.0000	154.7000	1.0430	183.5000	-183.5000
C3	Benzene	Gas cycle	358.9000	0.0149	-0.0214	11.0300	-11.0300
C4	Biphenyl	Gas cycle	0.0000	0.0000	0.0000	0.0000	0.0000
C5	Toluene	Gas cycle	47.6200	0.0048	1.0220	1.1290	-1.1290
C6	Methane	Liquid cycle	0.0000	0.0000	0.0000	0.0000	0.0000
C7	Hydrogen	Liquid cycle	0.0000	0.0000	0.0000	0.0000	0.0000
C8	Benzene	Liquid cycle	95.9900	0.0097	-0.0214	52.1900	-52.1900
C9	Biphenyl	Liquid cycle	0.0000	0.0000	0.0000	0.0000	0.0000
C10	Toluene	Liquid cycle	3768.0000	74.2400	1.0220	1845.0000	-1845.0000
C11	Methane	Quench cycle	7.3390	0.0035	0.0000	0.0241	-0.0241
C12	Hydrogen	Quench cycle	0.4510	0.0003	0.0000	0.0083	-0.0083
C13	Benzene	Quench cycle	1950.0000	0.1960	0.0000	3.3100	-3.3100
C14	Biphenyl	Quench cycle	40.7400	0.2030	0.0000	0.1200	-0.1200
C15	Toluene	Quench cycle	765.6000	0.2010	0.0000	1.3690	-1.3690

Mass indicators value for cycle paths in the alternative design

SPEED HDA Process: Comparison of alternative

- A simple economical study including all the associate cost with the HDA process was performed
- The values shows the improvement obtained by mass indicators analysis

The base design:

•Benefit = <u>-1579 (k\$/year)</u>

The alternative design:

•Benefit = <u>2309 (k\$/year)</u>

SPEED HDA Process: Measures of sustainability

<u>1.27 kg/kg</u>

1.22 kg/kg

Sustainability Metrics

Total Net Primary Energy Usage Rate = Imports - Exports-<u>75.09e⁺⁴GJ/y</u>

Total Net Primary Energy Usage Rate per kg Product <u>-78.58e⁺⁶kJ/kg</u>

Total raw materials used per kg product

Hazardous raw material per kg product

Net water consumed per unit mass of product <u>184.62</u> kg/kg

Total Net Primary	Energy Usa	ge Rate = Imj	ports – Exp	orts- <u>53.61e⁺⁴</u> GJ/y
Total Net Primary	Energy Usa;	ge Rate per k	g Product	<u>-55.24e⁺⁶kJ/kg</u>

 Total raw materials used per kg product
 1.22 kg/kg

 Hazardous raw material per kg product
 1.19 kg/kg

 Net water consumed per unit mass of product 171.35 kg/kg

Base Case

Generated Alternative

SPEED HDA Process: measures of sustainability

Environmental Impact

Stream No	Total PEI	HTPI	HTPE	ATP	TTP	GWP	ODP	PCOP	AP

Base Case

	Impact generated	-825772,00	8082,70	77298,30	11711,90	8082,70	111,55	0	-931059,00	0
--	------------------	------------	---------	----------	----------	---------	--------	---	------------	---

Generated Alternative

Impact generated -827968,00 8018,95 77157,60 11362,70 8018,95 111,76 0 -932637,00 0

SPEED HDA Process: Measures of safety

Safety Factors

Base Case & Generated Alternative

	To tal inherent sat	fety inde	ex (ISI)		
Chemical inh	erent safety index, Ici	Score	Process inhere	nt safety index, Ipi	Score
Subindices for reactions hazards			Subindice	es for process conditions	
	Heat of the main reaction, Irm	1		Inventory,Ii	3
	Heat of the side reactions,Irs	0		Process temperature,It	4
	Chemical Interaction, lint	4		Process pressure,Ip	2
Subindi	Subindices for hazardous substances		Subin	dices for process system	
	Flammability,Ifl	4		Equipment,Ieq	
	Explosiveness,Iex	1		Isbl	3
	Toxicity,Itox	4		Osbl	2
	Corrosivity,Icor	1		Process structure,Ist	2
	Ici	15		<i>Ipi</i>	16
				Out of 53	
		ISI	31		

Dow CEI = 801.6 mg/m³; HD₁ > 10000 m, HD₂ = 8016.4 m

SPEED Summary: Indicator-based methodology

- A systematic model-based method to generate alternatives that improves the ability of the process to be flexible and adapt to future demands has been presented and its application illustrated through examples.
- The indicators point to process/operation alternatives that affects the sustainability metrics parameters in the desired direction, avoiding, thereby, tradeoffs in design (decisions).
- The models and methodology are generic and can easily be applied in other targeted design problems.
- Industrial process flowsheets are being labelled in terms of their potential for improvement.

SPEED Lecture 4

Sustainable hybrid separation schemes

CO2 footprint - energy usage - waste - profit?

Direct & indirect CO2 emission

Energy intensive operations in chemical processes

Separation Processes are indispensable in chemical industry

Distillation is one of most used separation techniques among all

> 80 % of all the Vapor-Liquid separations are performed by distillation

Distillation is among highly energy intensive techniques with lower thermal efficiency

➢ More than 40,000 distillation units alone in US (2005) using nearly 75 million KW of energy

 $Thermal \ efficiency = \frac{Net \ work \ done}{Heat \ supplied}$

SPEED

Energy intensive operations in chemical processes

SPEED Analysis of design: distillation column

Design specification versus energy cost

SPEED Analysis of numerous distillation columns

SPEED Basis for hybrid separation scheme

SPEED Hybrid distillation + membrane scheme

Use membranes to remove from distillate the compound in the smaller amount ~ to increasing the purity of the compound in the larger amount!

SPEED New energy efficient sustainable design - 1

New energy efficient sustainable design - 2

Separation Task

39% energy on the base case design is saved by replacing the distillation operation with hybrid operation

SPEED New energy efficient sustainable design – 3b

SPEED Design of hybrid –intensified modules

Apply these hybrid modules whenever they match the design targets

6

Close to 50% or more energy reduction compared to original process achievable

Sustainable Product-Process Development

Synthesis stage: find the optimal processing route

Sustainable Product-Process Development

....

Sustainable process synthesis-design-intensification

More sustainable process CACE, PI-special issue, 2017; CACE, 81, 2015)

Represent base case process wrt to operations to phenomena

Processes Intensification method: Starting with a base case design (synthesis stage), set targets for improvement (design stage), generate new intensified options that match design targets and make the process more sustainable (innovation stage)

Recombine the phenomena to generate new intensified options

Stage – 3: Find innovative solutions

Target: Intensify (reduce number of operations) as well as operational cost

SPEED Industrial example of process intensification

Deordorization Plant – Alfa Laval, Copenhagen

SPEED

Energy efficient innovative designs for stage 3

Note: for existing process, stage-1 is not necessary and we start with stage-2 to define the targets for sustainable & innovative design

SPEED More examples (synthesis of dioxolane products)

SPEED More examples (toluene to p-xylene)

Anantasarn et al, CACE 2017 (PI Special Issue)

SPEED

Energy intensive operations in chemical

SPEED Idea-1: Swap solvent based design

SPEED Idea-1: Swap solvent based design

Application: Acetone-methanol-water (original solvent)

SPEED Idea-2: Main concept

If a solvent could be found that i) matches a desired distillation boundary; ii) is selective to B; iii) is environmentally acceptable; does not form azeotropes with A or B; iv) is miscible in the liquid phase,

Then an apriori optimal design is applicable for these azeotropes

SPEED Idea 2: Method development steps

SPEED Idea 2: Method development steps

System classification

> Based on the ternary plot and the position of the distillation boundary

SPEED Idea 2: Method development steps

Apriori design & correlations

DF of the system

Process design parameters (NS, N_F and reboiler duty) with respect to solvent behavior parameters (SFR and DF) for each class

Good correlations for Low-Low and Low-High classes
 Not enough data available for High-Low and High-High classes
SPEED Idea 2: Problem definition & solution

Starting point: homogeneous azeotropic mixture, desired driving force and desired distillation boundary

The method formulates and solves two sub-problems:

SUB-PROBLEM	GIVEN	Find
1	 Homogeneous azeotropic mixture & known solvent A priori process design matched 	The best (optimal) solvent that satisfy the process design
2	 Homogeneous azeotropic mixture & known solvent Solvent that does not match the <i>a priori</i> design 	The optimal extractive distillation design from the correlations

Tailor-made method: azeotrope separation SPEED

Problem definition & Solvent screening

Azeotropic mixture &

a priori process design

SFR_{SIM} vs

 SFR_{PD}/SFR_{TP}

Define the desired products and select the most optimal solvent matching the a priori design

Yes

Collect the necessary data for the azeotropic mixture and the solvent and check the classification of the system

Calculate the solvent flow rate, SFR_{PD} or SFR_{TD}, depending on the class

Calculate the design parameters, NS, N_F and RD, from the driving force

Rigorous simulation and verification of optimal design

Verification

SPEED Method (idea-2) application: Example

Objective: Define the products and select the most optimal solvent matching the a priori process design

n-Heptane n-HEPTANE (98 **INPUT:** Azeotrope Feed from ICAS Methanol/n-Heptane azeotropic mixture. DF (System) = 58, DF (Comp. 2 & Solvent) = 55 **SOLVENT SELECTION:** Di-n-butyl ether, from CAPEC database. n-Heptane 10 DI-n-BUTYL-ETHER (140.1 Methanol Solvent The proposed distillation boundary does not match the desired distillation boundary Di-n-butyl ether Methanol

SPEED Method (idea-2) application: Example

Objective: Collect the necessary data, classify the system and calculate the solvent flow rate.

PURE COMPONENTS PROPERTIES:

Component	Boiling point (K)	MW (g/mol)
Methanol	337.5	32.04
n-Heptane	371.4	100.21
Di-n-butyl ether	413.1	130.23

System data:

- Azeo. Comp.: 27%mol Methanol, 73%mol n-Heptane
- % Solvent in comp.2-solvent line: 14%mol
- DF diagram of the system: DF=58, D_x=16
- DF diagram of comp. 2 and solvent: DF=55, D = 22

Chemical product centric sustainable process design - Lecture 4

Method (idea-2) application: Example SPEED

Objective: Calculate the design parameters, NS, N_E and RD, from the driving force.

NUMBER OF STAGES:

REBOILER DUTY:

70

80

SPEED Method (idea-2) application: Example

Chemical product centric sustainable process design - Lecture 4

Chemical and bio-based industry faces enormous challenges to achieve and/or respond to:

Processes need to be:

Sustainable (Economically feasible; Reduced waste; Utility efficient; Environmentally acceptable); Safe; Operable;

SPEED Summary: Sustainable Process Design

Chemical Process Design: Problem Definition

Given: Reference design of a process

Objective: Generate design alternatives that can only improve one or more sustainability metrics and safety factors while remaining aprroximately neutral for all other metrics and factors

Determine: Mass & energy indicators for the process under investigation; identify the sensitive indicators; set target values for the sensitive indicator; find alternatives that match the targets

SPEED Application examples

