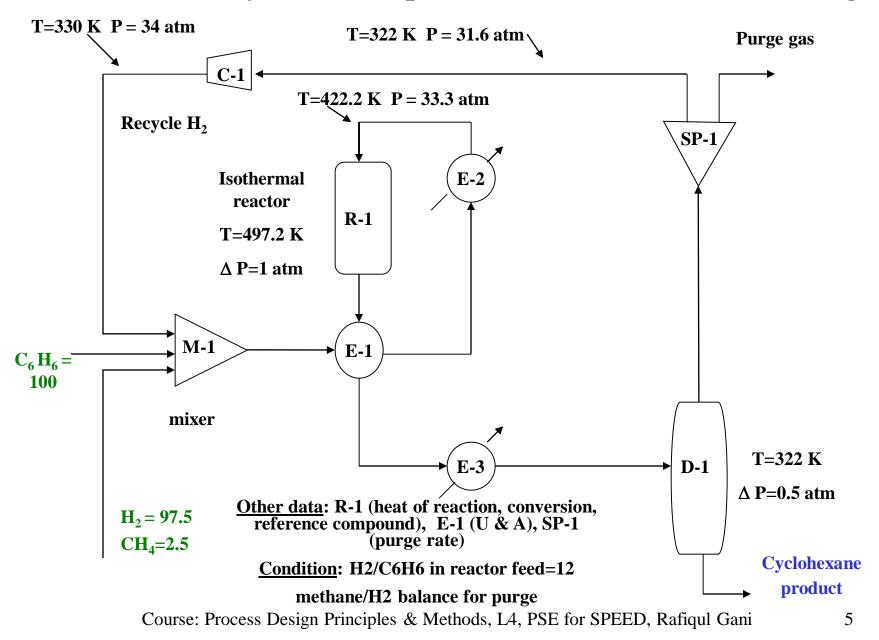

Lecture 4: Mass & Energy Balance

Chapters 3-4, 7-8 (Textbook) plus additional material
Part-1: Extension of the mass balance model
Part-II: Different types-levels of decision
Part-III: Case-study (methods for design decision making plus application of simulator for mass & energy balance with simple model)

Design decisions versus sequence of tasks

Flowsheet for cyclohexane production – Mass Balance

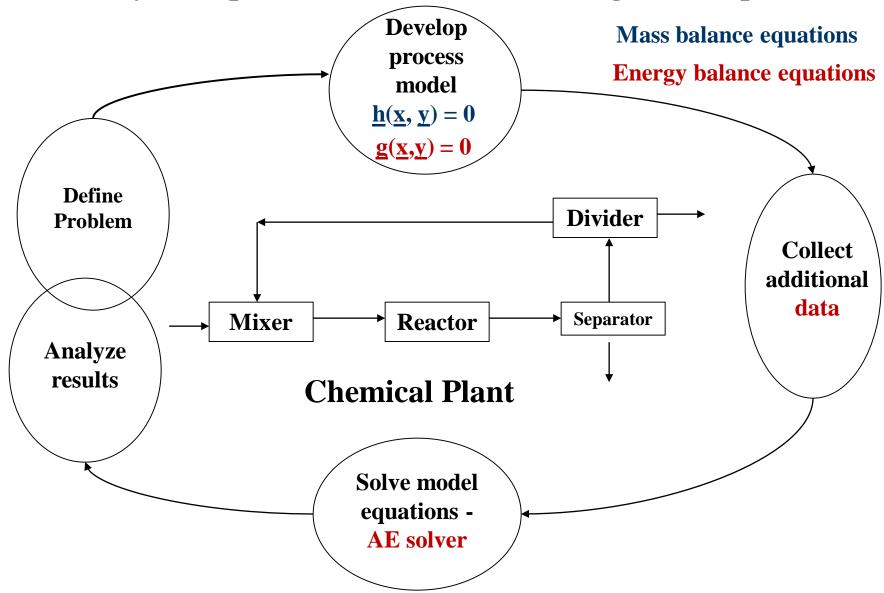


The objective is to fill-out the stream summary table! Which stream variables are known? x are specified variables; x are calculated mass balance model; x are obtained from x

Variables	Streams										
	S1	S2	S3	S4	S5	S8	S9	S10			
f _{1,j}	X	X	X	X	X	X	X	X			
f _{2,j}	X	X	X	X	X	X	x	X			
f _{3,j}	X	x	X	X	x	X	x	X			
f _{4,j}	X	x	X	X	X	X	X	X			
F _j	X	X	X	X	X	X	X	X			

For mass balance: Number of streams (NS) = 8; Number of independent variables = NC*NS; Number of known variables = 2*NC; Number of unknown variables = 6*NC; NC is the number of compounds; subscript j indicates any stream j

Flowsheet for cyclohexane production - What are we solving?



The objective is to fill-out the stream summary table! Which stream variables are known? x indicate a specified variable.

Variables		Streams											
	S1	S2	S 3	S4	<u>\$5</u>		S13						
f1	X	X	X	X	X	••••	X						
f2	X	x (x	X	X	••••	X						
f3	X	x	x	X	X	••••	x						
f4	x	X	X	X	X		x						
T	X	X	x	X	X	•••••	X						
P	X	X	X	X	X	• • • • •	X						

Total number of stream variables = 13 (NC+2); Number of known stream variables = 2 (NC+2). Note: for energy balance, there will now be at least 2 more rows for enthalpy, vapor fraction of the stream

Steady state process simulation - solve algebraic equations

Course: Process Design Principles & Methods, L4, PSE for SPEED, Rafiqul Gani

Two ways to perform mass & energy balance simulations

- •Use a process simulator (see PROII manual)
- •Build your own simulator (chapters 3, 7-8)
 - Derive the model equations
 - •Use a suitable solver to solve the **model equations**

Both alternatives will require you to specify* -

- •The flowsheet
- •Variables representing the input streams
- •Parameters for all unit modules (reactor, stream calculator, divider)
- •Specify temperatures, pressures and/or phase condition

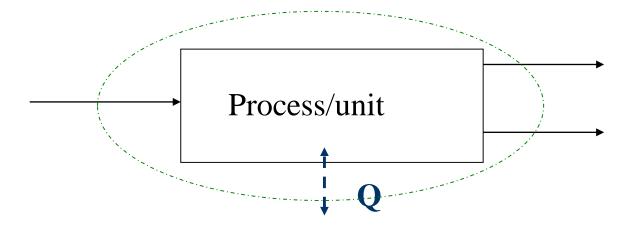
* By making design decisions on variables that need to be specified

Mass & Energy Balance: Modelling Issues

Add the energy balance equations (model) to the simple mass balance model

$\underline{h}(\underline{x}, \underline{y}) = 0$ mass (component) balance; j*NC per unit

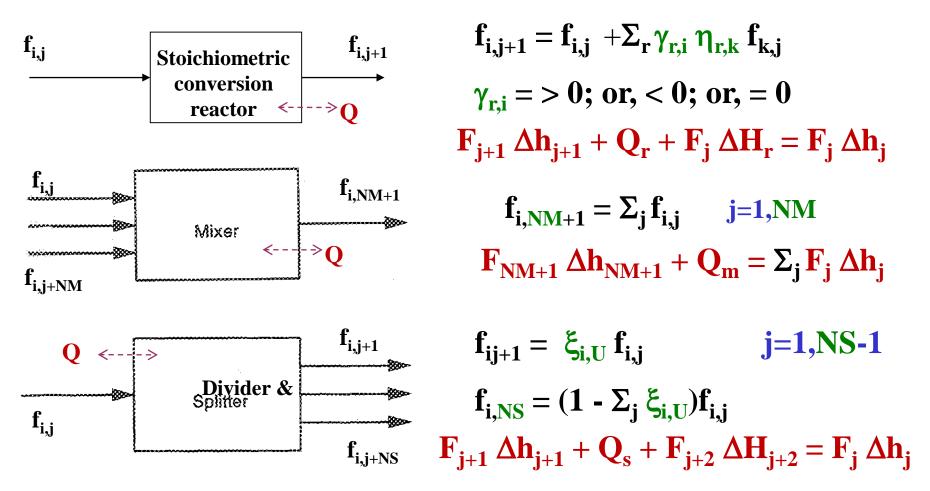
 $\underline{g}(\underline{x},\underline{y}) = 0$ energy balance; 1 per unit


Mass & Energy Balance

Principle of conservation (mass)

Rate of accumulation = dM/dt

 $dM/dt = Mass_{in} - Mass_{out} + Mass_{gen} = 0$ (for steady state)


Principle of conservation (energy) Rate of accumulation = dE/dt $dE/dt = Energy_{in} - Energy_{out} + \Delta H_R + Q = 0$ (for steady state)

Course: Process Design Principles & Methods, L4, PSE for SPEED, Rafiqul Gani

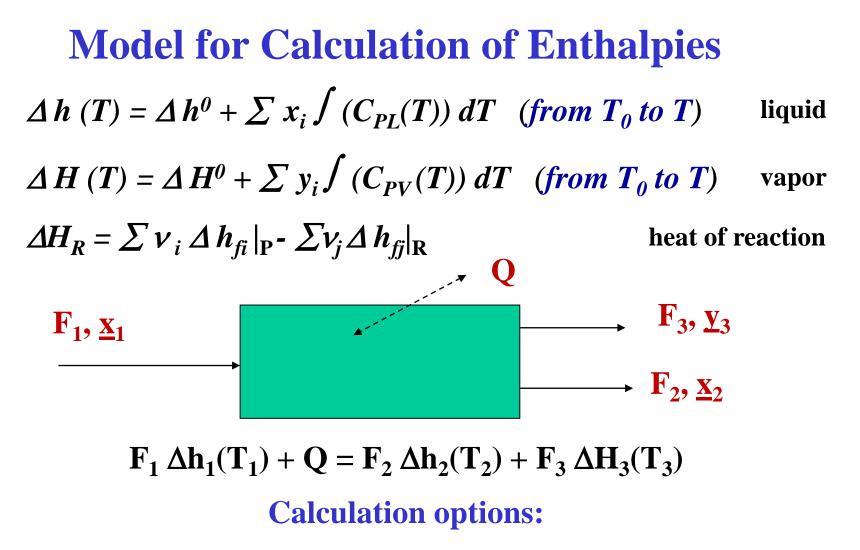
10

Simple mass and energy balance model

Note: A flash or component splitter can use the same model as divider/splitter where ξ_{iU} (recovery of component i) is specified for each compound i Note: Splitter in PROII is called stream calculator 11

Models for Calculation of Enthalpies

Liquid Enthalpy


 $\Delta h (T) = \Delta h^{\theta} + \sum x_i \int (C_{PL}(T)) dT \quad (from \ T_{\theta} \ to \ T)$ $\Delta h (T) = \Delta H (T) - \sum x_i H_{VAPi} (T)$

Vapour Enthalpy

$$\Delta H (T) = \Delta H^{0} + \sum y_{i} \int (C_{PV}(T)) dT \quad (from \ T0 \ to \ T)$$
$$\Delta H (T) = \Delta h (T) + \sum y_{i} H_{VAPi} (T)$$

Heat of Reaction

$$\Delta H_R = \sum v_i \Delta h_{fi} |_{\mathbf{P}} - \sum v_j \Delta h_{fj} |_{\mathbf{R}}$$

*1: Fix T₂ = T₃ and then calculate Q ??

*2: Fix Q and calculate $T_2 = T_3$??

Design of Refrigeration Cycles (Chapter-4)

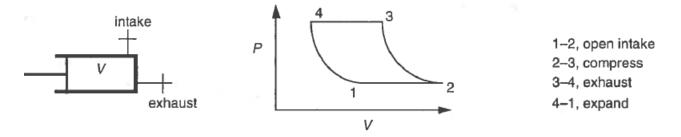


FIGURE 4.9 Compression cycle for reciprocating compressor.

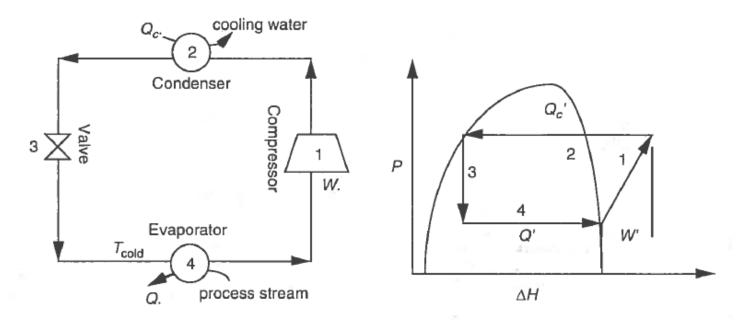
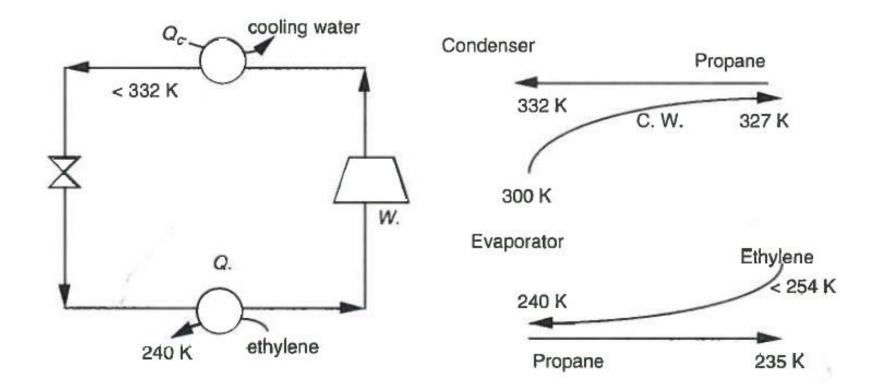
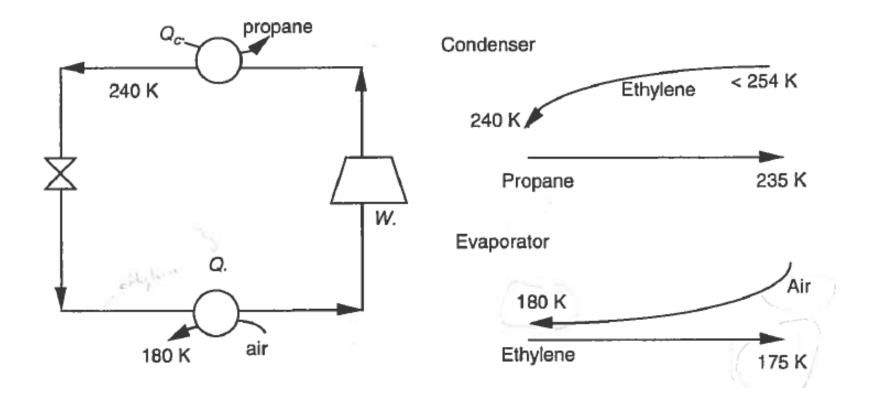


FIGURE 4.10 Refrigeration cycle and phase diagram.


EXAMPLE 4.3

Suppose we want to cool air as a process stream to 180K. Consider the refrigerants:

R	$T_{\text{boil}}(\mathbf{K})$	0.9 <i>T_c</i> (K)
Ethylene	169	254
Propane	231	332


We know that ethylene will go down to 180 K but not up to 300 K. The opposite holds for propane. Therefore, we need at least two stages: one propane, one ethylene.

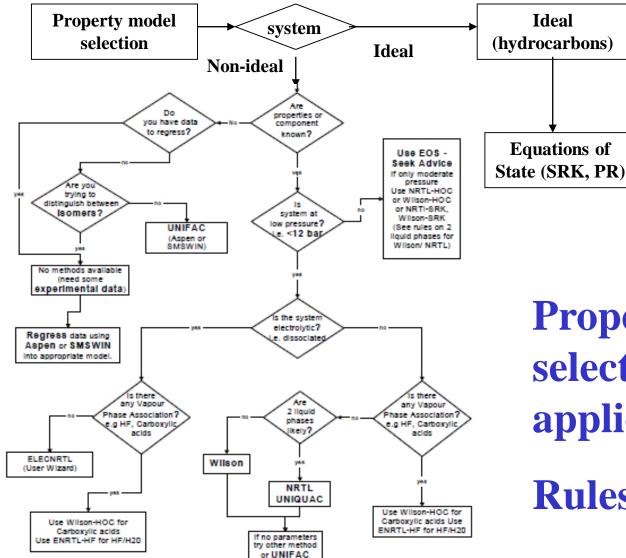
Stage 1: Consider propane as the refrigerant

Course: Process Design Principles & Methods, L4, PSE for SPEED, Rafiqul Gani 16

Stage 2: Consider ethylene as the refrigerant

Design of Refrigeration Cycles (exercise in class – Exercise 6 from Ch-4 of textbook)

A stream of n-butane needs to be cooled from 300 K to 250 K. The change in heat content for this stream is 300 KW. Possible refrigerants are:

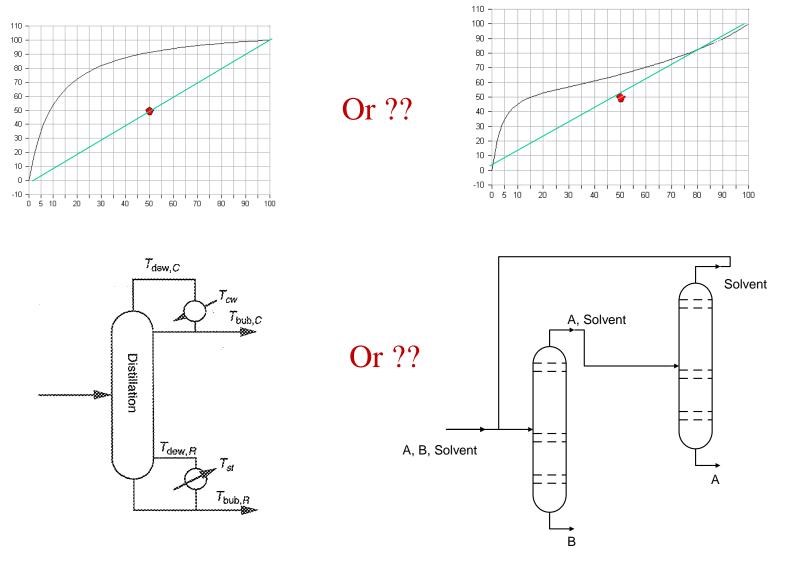

	$T_{b}(K)$	$T_{C}(K)$
Ethane	184.5	304
Propane	231.1	370
Isobutane	261.3	408

- a) How many stages of refrigerants are required? Select the refrigerants for each stage.
- b) Decide the operating pressure if $\Delta T_m = 5 \text{ K}$
- c) For coefficient of work = 5, determine the compressor work and the cooling water duty.

a) - Number of stages = $(T_{in} - T_{out}) / \Delta T_{cycle}$ - Check the Tb, Tc and the following rules: $T_b \le T_{int} \le T_{cw} \le 0.9T_c$ for stage 1 $T_b \le T_{int} \le T_{cw} \le 0.9T_c$ for stage 2

b) Decide the temperatures for the heat exchangers in the two cycles (see the refrigeration cycle diagram); use the vapor pressure model to calculate the pressures at the selected temperatures – find the Antoine constants for each compound

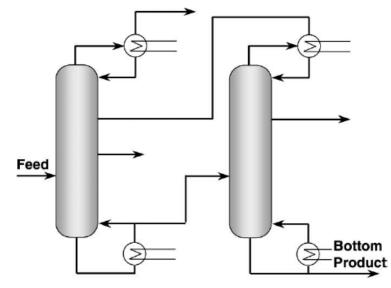
b) Use Eq. 4-40 for work; Eq. 4-41 for Q_c and W_b


Property model selection and application:

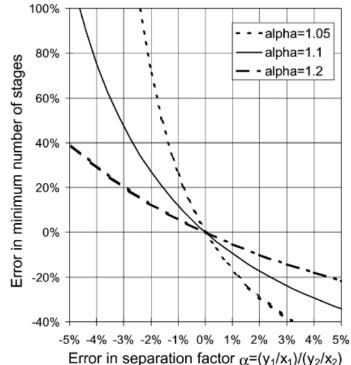
Rules for selection

SIMSCI - Thermodynamic Data			
UOM Range Help Overview Status Notes			
Selection of Property Calculation System Category: Primary Method: Most Commonly Used NRTL All Primary Methods NRTL Equations of State Wilson Liquid Activity Van Laar Generalized Correlations Regular Solution Special Packages Plory-Huggins	Defined Systems: IDEA01 UNIQ01 Default System: IDEA01		
Actions for Selected Property Calculation System	Thermodynamic Data -	Modification	
ModifyDelete	UOM Range Help	Overview	,
OK Cancel		Current Method:	Property-specific Data:
Select a primary thermodynamic method for the system	K-value (VLE)	UNIQUAC	Enter Data
	K-value (LLE)	None	 Enter Data
	K-value (SLE) Liquid Enthalpy	None	✓ Enter Data
	Vapor Enthalpy	Library	Enter Data
	Liquid Density	Library Library	Enter Data Enter Data
Property model	Vapor Density	Library	Enter Data Enter Data
	Vapor Fugacity (Phi)	Ideal	Enter Data
selection options in	Liquid Entropy	None	 Enter Data
PROII:	Vapor Entropy	None	 Enter Data
Thermodynamic data	Transport Properties Water Options	Refinery Inspection Pro	
		OK. Can	icel
	Exit the window after saving a	all data	

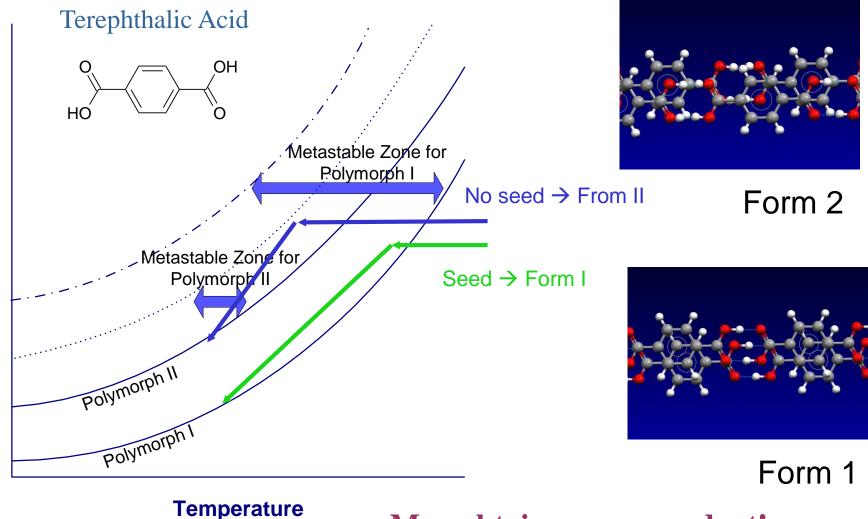
21


Inconsistent choice of models: Consequences - I

Course: Process Design Principles & Methods, L4, PSE for SPEED, Rafiqul Gani


22

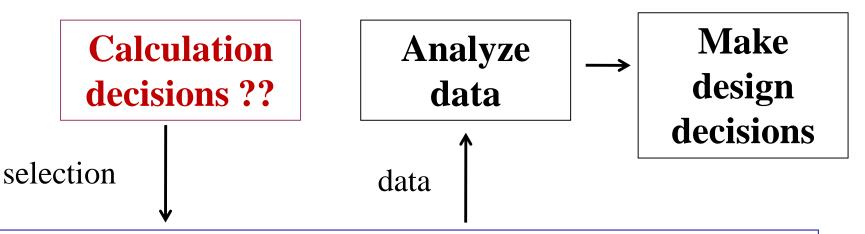
Inconsistent choice of models: Consequences - II


Process for separation of styrene from ethylbenzene

Positive error means lower cost and infeasible separation, while negative error means feasible separation at significantly higher costs Dohrn & Pfohl, Fluid Phase Equilibira, 194-197 (2002) 15-29

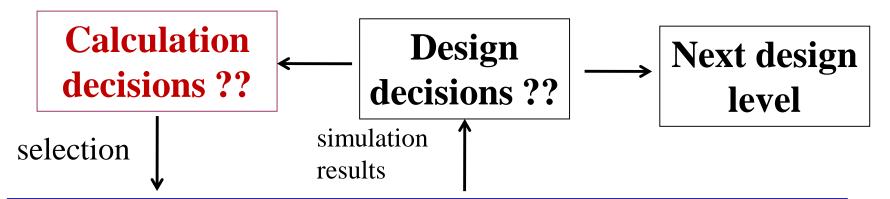
Consequence of error in calculated separation factor on number of stages

Inconsistent choice of models: Consequences - III



Solubility

May obtain wrong product!


Course: Process Design Principles & Methods, L4, PSE for SPEED, Rafiqul Gani

Decisions related to generation of data

- Modelling: Related to mass balance; mass & energy balance; unit operations; enthalpy; phase behaviour;
 - Operational phenomena: reaction; mass-heat transfer; phase separation; solubility; ...
 - Phenomena:
 - Properties: pure component, mixture, phase-states
- Calculation options: data generator (phase diagrams, saturation conditons, kinetic data, solvent data, ...)

Decisions: Verify design

- Modelling: Related to mass balance; mass & energy balance; unit operations; enthalpy; phase behaviour;
 - Unit operations: reactors; separators; pumps, ...
 - Phase behaviour: fugacity, activity coefficients, vapor pressure,
 - Energy: enthalpies; heats of reaction, heats of vaporization; ...
- Simulator options: models, calculation sequence, specified data, convergence criteria, ...

Ethanol Process: Case Study (from Textbook)

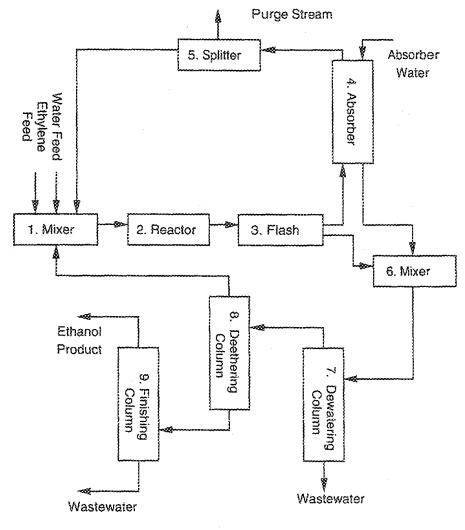
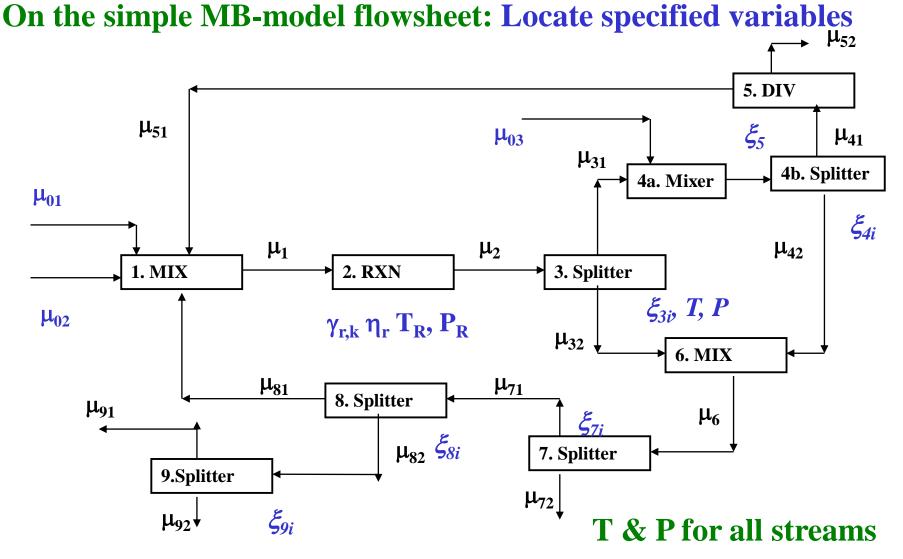


FIGURE 3.1 Ethanol flowsheet.

Mass balance has been performed & the simulation results have been verified (this completes tasks 1-4).

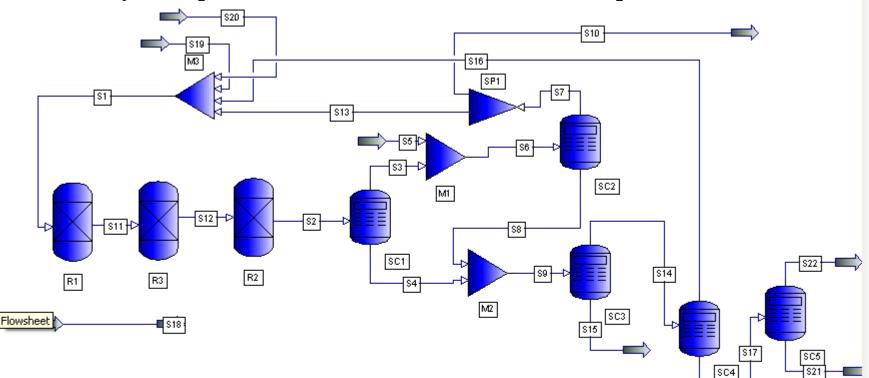
Start tasks 5-6 by defining the temperatures and pressures of all streams still using the simple model


With specified T & P for all streams, perform mass & energy balance and calculate heat addition/removal from each unit operation

Ethanol Process: Case Study (from Textbook)

FIGURE 3.1 Ethanol flowsheet.

- In order to perform mass & energy balance (simple) what do we need?
- 1. Models for each unit operation?
- 2. Identify which variables need to be specified?
- 3. Use the flowsheet for MB-model!
- 4. Decide what values of P & T to specify
- 5. From the energy balance, obtain the heat duties for each unit operation

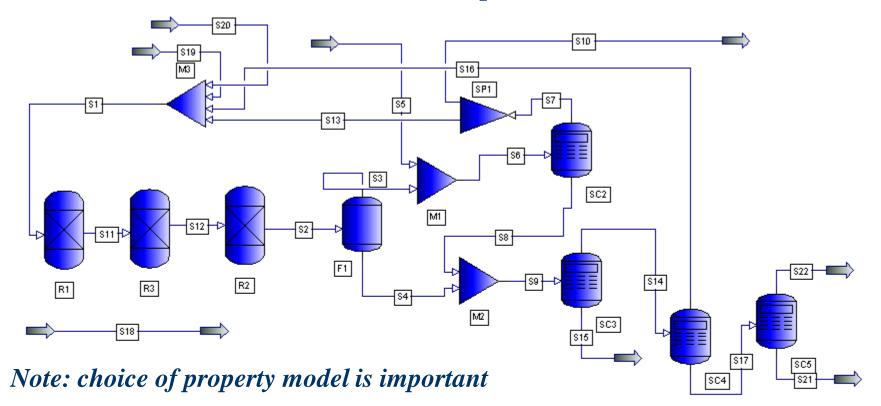

If all the variables marked in blue are known, then all new variables E_j (energy of stream j) & Q_U (heat duty for unit U) in the simple flowhseet can be calculated! 29

Using option 1 from slide 13, perform mass+energy balance μ_{52} for the ethanol case study **5. DIV** μ_{51} μ_{41} μ_{03} μ_{31} 4b. Splitter 4a. Mixer μ_{01} μ_2 **1. MIX** 2. RXN 3. Splitter μ_{42} μ_{02} μ_{32} **6. MIX** μ_{81} μ_{71} 8. Splitter μ_{91} μ_6 7. Splitter μ_{82} 9.Splitter μ_{72} μ_{92}

First identify the "tear stream", the calculation sequence & a good estimate for the tear stream; specify calc T_j & selected P_i for all streams for M+E balance³⁰

Close the recycle loop and add the last separator (end of task 4)

Note: recycle loop is now closed. Check the calculation sequence.

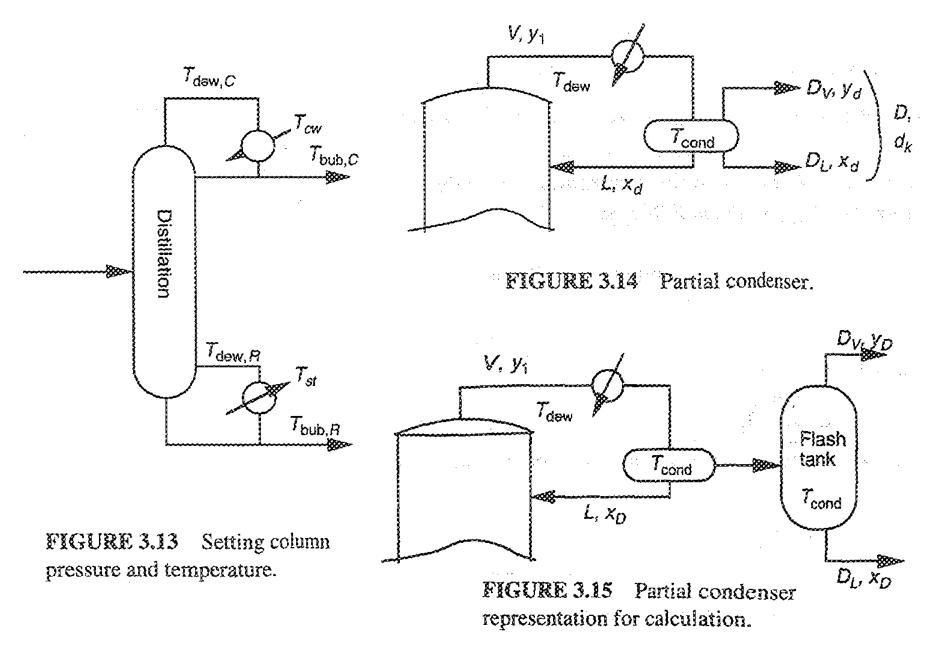

Check the converged stream compositions & flowrates for S1 and S2

Τ	S1	S11	\$2	S12	S3	S4	S5	S6	S7	S8	S9	S10	S13	S14	S15	S16
	Mixed	Vapor	Vapor	Vapor	Vapor	Mixed	Liquid	Mixed	Vapor	Mixed	Mixed	Vapor	Vapor	Mixed	Liquid	Vapor
Т	292,5756	590,0000	590,0000	590,0000	310,0000	310,0000	300,0000	301,1133	300,0000	300,0000	308,9658	300,0000	300,0000	350,0000	370,0000	300,0000
	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000	1,0000
	13,3936	82,6858	82,6584	82,6601	13,7204	2,5232	0,0764	13,7968	9,6881	0,8739	3,3971	0,0484	9,6396	9,6450	4,7240	1,6389
	25,9916	26,9433	26,9639	26,9639	28,9286	22,6790	18,0150	28,6899	28,6080	29,5908	23,7622	28,6080	28,6080	37,3810	18,0395	42,6100
1	0,7010	1,0000	1,0000	1,0000	1,0000	0,0269	0,0000	0,9898	1,0000	0,3472	0,0737	1,0000	1,0000	0,9825	0,0000	1,0000

Course: Process Design Principles & Methods, L4, PSE for SPEED, Rafiqul Gani

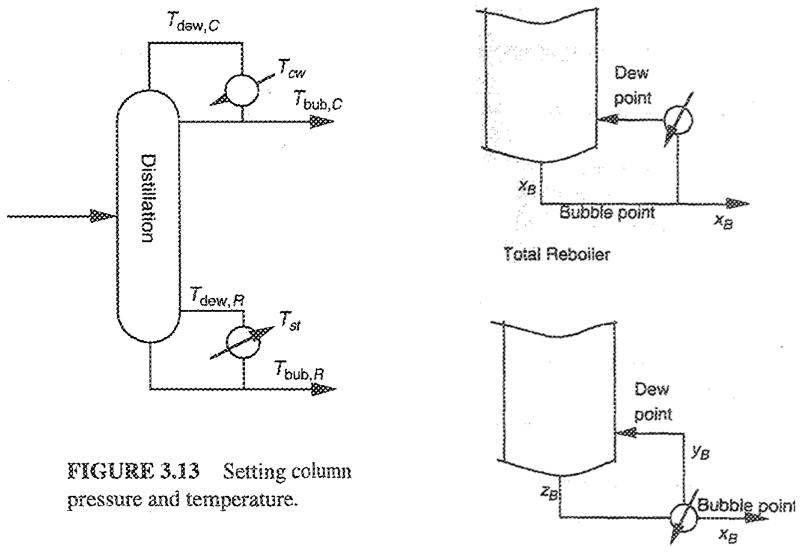
31

Identify P & T for the P-T Flash and replace the stream calculator with a model for the flash Unit-Op (start of tasks 5-6)



	S11	\$2	S12	\$3	S4	S5	S6	\$7	S8	S9	S10	S13	S14	S15	S16	S17
Ы	Vapor	Vapor	Vapor	Vapor	Liquid	Liquid	Mixed	Vapor	Liquid	Liquid	Vapor	Vapor	Vapor	Liquid	Vapor	Liquid
7	590,0000	590,0000	590,0000	375,0000	375,0000	300,0000	376,3625	375,0000	375,0000	375,0000	375,0000	375,0000	403,0547	479,8508	319,8530	445,4099
b	69,0000	69,0000	69,0000	68,5000	68,5000	1,0000	68,5000	68,5000	68,5000	68,5000	68,5000	68,5000	17,0000	18,0000	16,0000	17,0000
Þ	82,7215	82,6940	82,6958	14,2225	10,6343	0,0764	14,2989	12,4808	1,0340	11,6683	0,0624	12,4184	14,6302	10,2864	4,7525	3,2939
5	26,9469	26,9675	26,9675	28,1309	25,5722	18,0150	27,8545	27,7624	29,0262	25,8569	27,7624	27,7624	34,6502	18,0395	34,9424	33,9140
7	1,0000	1,0000	1,0000	1,0000	0,0000	0,0000	0,9467	1,0000	0,0000	0,0000	1,0000	1,0000	1,0000	0,0000	1,0000	0,0000
3	0,0000	0,0000	0,0000	0,0000	1,0000	1,0000	0,0533	0,0000	1,0000	1,0000	0,0000	0,0000	0,0000	1,0000	0,0000	1,0000
2	2465,482	2463,597	2463,597	1343,425	1120,172	37,740	1381,165	1280,521	100,645	1220,816	6,403	1274,118	574,545	646,272	411,295	163,250

S20 · S10 · S16 MB. SP1 S7 S5 S1 S13 · **Dew point** S6 \$3 SC2 M1. S12 D S2 S11 S8 1 F1 S22 S14 R2 R1 R3 S4 S9 SC3 M2 S18 \$17 SC5 S21 V1 SC4 **Bubble point**

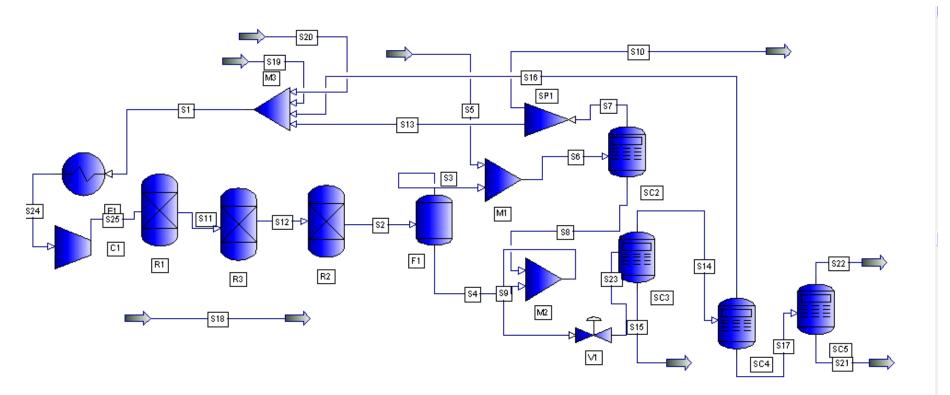

Specify T and P for distillate & bottom products in distillation columns

S1	S11	\$2	S12	\$3	S4	S5	S6	S7	S8	S9	S10	S13	\$14	S15	S16	S17
Mixed	Vapor	Vapor	Vapor	Vapor	Liquid	Liquid	Mixed	Vapor	Liquid	Liquid	Vapor	Vapor	Vapor	Liquid	Vapor	Liquid
309,2725	590,0000	590,0000	590,0000	375,0000	375,0000	300,0000	376,4506	375,0000	375,0000	375,0000	375,0000	375,0000	404,5365	479,8643	320,4350	445,3965
1,0000	69,0000	69,0000	69,0000	68,5000	68,5000	1,0000	68,5000	68,5000	68,5000	68,5000	68,5000	68,5000	17,0000	18,0000	16,0000	17,0000
18,6212	81,5386	81,5139	81,5168	14,0961	10,2784	0,0764	14,0655	12,2509	1,0133	11,2677	0,0613	12,1896	14,2214	10,2853	4,3165	3,2950
25,7362	26,7183	26,7358	26,7358	27,9633	25,2387	18,0150	27,6791	27,5780	28,9675	25,5196	27,5780	27,5780	34,3645	18,0388	34,5620	33,9012
0,7281	1,0000	1,0000	1,0000	1,0000	0,0000	0,0000	0,9469	1,0000	0,0000	0,0000	1,0000	1,0000	1,0000	0,0000	1,0000	0,0000
0,2719	0,0000	0,0000	0,0000	0,0000	1,0000	1,0000	0,0531	0,0000	1,0000	1,0000	0,0000	0,0000	0,0000	1,0000	0,0000	1,0000
2512,500	2432,031	2430,438	2430,438	1335,485	1094,953	37,740	1363,141	1263,910	99,231	1192,690	6,320	1257,590	546,518	646,172	383,110	163,408
195 7569	197 6661	197 6661	197 6661	185 2389	12 4272	0 0000 I	183 3088 I	183 3088	0 0000 1	12 3647	0.9165	182 3923	12 3647	I 0.0000 I	12 3647 I	0 0000

Course: Process Design Principles & Methods, L4, PSE for SPEED, Rafiqul Gani

FIGURE 3.16 Reboiler configurations.

Partial Reboiler


Course: Process Design Principles & Methods, L4, PSE for SPEED, Rafiqul Gani

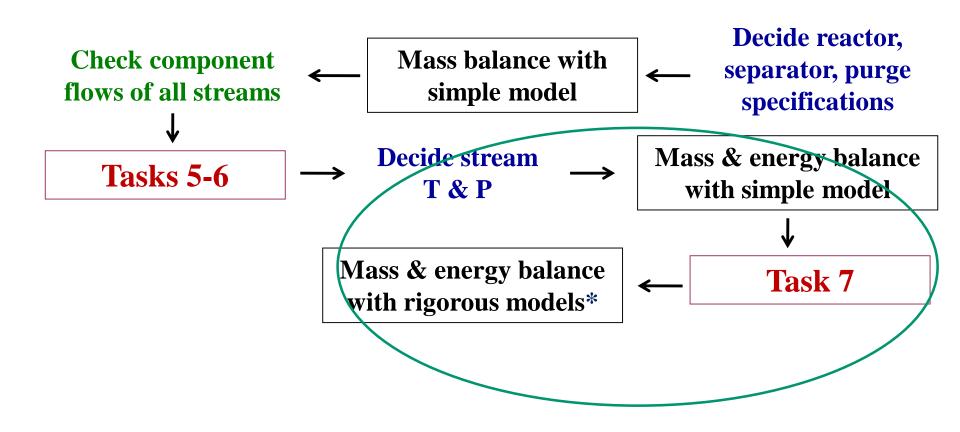
35

Specify T and P for distillate & bottom products in distillation columns

PRO/II - Stream Calculator	
UOM Define Range Help	Overview Status Notes
Unit: SC3	Description:
Feed Scaling Overhead Product Product Product Product Specifications Pseudoproduct Specifications Pseudoproduct Specifications Pseudoproduct	 If negative flowrates are encountered, <u>reset</u> <u>rates to zero</u> Thermodynamic System: UNIQ01
The stream calculator will combine the fe bottoms products.	
Stream Calculator - Overhead Product Conditions	Stream Calculator - Bottoms Product Conditions
UOM Define Range Help	UOM Define Range Help
Thermal Specification:	Thermal Specification:
Dew Point Temperature	Bubble Point Temperature
Pressure Specification:	Pressure Specification:
Pressure 17.000 bar	Pressure 18.000 bar
Temperature Estimate: K Product Phases	Temperature Estimate: K Product Phases
OK Cancel	OK Cancel Exit the window after saving all data
Exit the window after saving all data	

Add heat exchangers, pumps, compressors, expansion valves, etc., to change stream T and/or P

S1	S11	\$2	S12	\$3	S4	S5	S6	S7	S8	S9	S10	S13	S14	S15	S16	S17
Mixed	Vapor	Vapor	Vapor	Vapor	Liquid	Liquid	Mixed	Vapor	Liquid	Liquid	Vapor	Vapor	Vapor	Liquid	Vapor	Liquid
309,4559	590,0000	590,0000	590,0000	375,0000	375,0000	300,0000	376,2754	375,0000	375,0000	375,0000	375,0000	375,0000	405,8932	479,9062	318,7552	445,4302
1,0000	69,0000	69,0000	69,0000	68,5000	68,5000	1,0000	68,5000	68,5000	68,5000	68,5000	68,5000	68,5000	17,0000	18,0000	16,0000	17,0000
16,2007	82,8322	82,8053	82,8071	14,3242	10,5837	0,0764	12,0275	10,5289	0,8663	10,7915	0,0526	10,4762	13,5870	10,3172	3,6094	3,2340
25,6062	26,9279	26,9480	26,9480	28,1059	25,5443	18,0150	28,3431	28,3858	27,8459	24,8758	28,3858	28,3858	33,4741	18,0365	33,3957	33,6463
0,6886	1,0000	1,0000	1,0000	1,0000	0,0000	0,0000	D,9369	1,0000	0,0000	0,0000	1,0000	1,0000	1,0000	0,0000	1,0000	0,0000
0,3114	0,0000	0,0000	0,0000	0,0000	1,0000	1,0000	0,0631	0,0000	1,0000	1,0000	0,0000	0,0000	0,0000	1,0000	0,0000	1,0000
2242,405	2471,442	2469,602	2469,602	1353,274	1116,328	37,740	1109,285	1021,540	87,746	1163,607	5,108	1016,432	515,508	648,099	354,173	161,335


37

Mass and Energy balances for Ethanol Process Flowsheet

	μ _{in}	μ ₀₂	μ	μ_2	μ ₃₁	μ ₃₂	μ_{41}	μ_{42}	μ ₀₃
Methane (gmol/s)	1	0	200	200	199.2	0.8	199.2		0 S
Ethylene	96		1289	1198.77	1180.78	17.98	1155.99	24.796	0
Propylene	3		268.6	266.71	248.58	18.136	223.97	24.609	0
Diethyl Ether	0	0 a	0	2,421	1.210	1.2108	0.2906	0.9202	0
Ethanol	0	0	0.56	90.79	10.98	79.80	0.1098	10.87	0
Isopropanol	0	0	0	1.8802	0.156	1.724	0.001018	0.1550	0
Water	0	771.797	773.4	680.72	36.75	643.97	1.610	72.896	37.747
Total	100	771.797	2531.56	2441.31	1677.68	763.62	1581.177	134.25	37.747
Temperature, K	300	300	590	590	393	393	381.57	338.7	310
Pressure, bar	· · · · ·	1	69	69	68.5	68.5	68	68	68
Vap. Frac]	0	1	1	1	0	1	0	0
Enthalpy, kcal/s	1198.85	-52097.04 -	-21683.63 -	22689.24	11515.18	-47920.28	13439.75	-5324.42 -	-2544.97
	μ ₅₁	μ ₅₂	μ ₆	μ ₇₁	μ	72 µ ₈₁	μ ₈₂	μ ₉₁	μ ₉₂
Methane (gmol/s)	198.204	0.996	0.8	0.8		0 0.8	0	0	0
Ethylene	1150.21	5.780	42.778	42.778		0 42.7781	0	0	0
Propylene	222.85	1.1198	42.746	42.746		0 42.7466	0). Bill (1997) (19977) (19977) (1997) (1997) (1997) (1997) (1997) (1997) (1997)	0 :
Diethyl Ether	0.2891	0.00145	2.131	2.131		0 2.1205	0.01065	0.01065	0
Ethanol	0.1093	0.000549	90.680	90.226	0.453	0.451	89.775	89.3267	0.4489
Isopropanol	0.001013	5.09323E-06	1.879	1.804	0.07	75 0	1.804	0.1046	1.6994
Water	1.6024	0.00805	716.867	71.68	645.1	18 0	71.686	15.1490	56.537
Total	1573.27	7.9058	897.882	252.173	645.7	88.896	163.277	104.591	58.686
Temperature, K	381.57	381.57	372	310	48	310	418	350	383
Pressure, bar	67.5	67.5	68	17.56	18.0	10.7	11.2	. 1	1.5
Vap. Frac	.1	1	0	0		0 1	0	0.	0
Enthalpy, kcal/s	13372.55	67.197	-53244.70	-10436.14	-42629.3	37 590.10	-10576.78	-6787.79	-3930.30

Compare the results with those obtained through **PROII**

Next task & next lecture

