Chemical product centric sustainable process design: Targeted reverse process design & concept of process group based flowsheet synthesis

Rafiqul Gani PSE for SPEED Skyttemosen 6, DK-3450 Allerod, Denmark rgani2018@gmail.com

*PSEforSPEED.com

Sustainable Product-process Engineering, Evaluation & Design

Targeted reverse process design & concept of process group based flowsheet synthesis:

- Solvent-based environmentally acceptable process design
- Driving force based separation process design
- Process group based flowsheet synthesis

We have an aqueous mixture of phenol in a waste water stream. We need to remove the phenol. Benzene is known as a solvent but due to environmental reasons, we cannot use it. What should be a good replacement solvent for benzene?

SPEED Example of solvent-based separation

Solvent substitution in process design **SPEED Define target (substitute benzene)** * **Property specifications:** - Tb > 322 K - Tm < 314 K – 29 kJ/mol < Hvap < 34 kJ/mol</p> $-\log P > 1.5$

- High solvent power
- High Phenol precipitation mole fraction at 298 K

Match target: Initial search (generate candidates)

- * Property specifications (revised target):
 - Tb > 322 K
 - Tm < 314 K
 - $-\delta_{\text{SP}}$
- * Use the above properties to search among non-aromatic compounds
- * Design acyclic compounds: alcohols, ketones, aldehydes, ethers.

Match target through CAMD – reverse design

benzenereplacement4_phenol.CAM - ICAS-ProCAMD						<u>_ 8 ×</u>	
<u></u>							
□ ☞ 🖬 👗 📾 🔮 💡 🕺							
Generate Compounds containing sulphur Selected Groups: CH3 CH2 CH C OH CH3CO CH2CO CH0 CH3O CH2O CH-0		Comp	iound 1 :	Description : No Groupname 3 CH3 1 C			
Edit Groups			1	2. Ori No G 1 ('	1 CHO der descr iroupnam CH3)3C	iption : e	
User specifi Number of compounds designed : 3065 Number of compounds selected : 43 Number of isomers designed : 120 Number of isomer selected : 13 Total time used to design : 6.64 s		-	erties :				
Extended P Screened Out' Statistics for Primary Calculations :			erty colWater partition coef.	Value	2. Value	Unit	
Content of Southanger Science in Science in Southanger Science in			pility parameter at 298 K	17.01	16.67	MPa ¹¹²	
Enthalpy of Vaporization : 171 of 214			alpy of vaporization	204.06	200.72	K	
Minimum nu 'Screened Out' Statistics for Secondary Calculations :			al Boiling point	359.54	357.81	K	
Maximum ni Octanol/Water partition coef. : 2 of 120 Solubility parameter at 298 K : 80 of 118			ent power	0.541	0.541		
Enthalpy of Vaporization : 25 of 38		-	phase of keycomp. I at XI	-	0.785	L	
Maximum n							
Perform tracabase search after generation		4				• •	
Beadu	<u> </u>	<u> </u>	>> >I Sort Info			Short	

- Product-process evaluation
 - High precipitation mole fractions of phenol.
 - A CAS Registry number exists (availability & additional information)

Process evaluation

Chemical product centric sustainable process design - Lecture 3

SPEED Example:Separation of an azeotropic mixture

Problem: A process stream of 50 mole% Acetone and 50 mole% Chloroform at 300K, is to be separated.

Separation techniques considered:

Adsorption (liquid, gas) Crystallization Desublimation Distillation – simple Distillation – extractive Distillation with decanter Liquid-liquid extraction Flash/evaporation Membrane (gas, liquid) Microfiltration Partial condensation No external medium known; Binary ratios of properties identify the following alternatives:

Separation techniques:

Distillation – simple Distillation – extractive Distillation – azeotropic Liquid extraction Pressure swing

Note: Acetone-chloroform forms a high boiling azeotrope that is slightly pressure sensitive

SPEED Solvent design sub-problem

- CAMD problem:
- 340 < T_{boil} < 420
- Selectivity > 3.5
- Solvent power > 2.0
- No azeotropes

Solution:

- 1-Hexanal
- Methyl-n-pentyl ether
- (Benzene)

- Number of compounds designed: 47792 Number of compounds selected: 53
- Number of isomers designed: 528 Number of isomer selected: 23
- Total time used to design: 57.01 s

SPEED Summary: CAMD-based solvent selection

- Solvent selection/design based on CAMD is very large but application is limited by availability of suitable property models (separation, reactions, formulated products, ...)
- Extension to solvent mixture (blend) design is simple and easy
- Integration of process and product design is possible (requires methods & tools integration)
- Available software: ICAS-ProCAMD

Targeted reverse process design & concept of process group based flowsheet synthesis:

- Solvent-based environmentally acceptable process design
- Driving force based separation process design
- Process group based flowsheet synthesis

SPEED Driving force based sustainable design

- Sustainable process (design) alternatives can be generated by targetting designs that utilize the maximum available driving force
- Use of maximum driving force implies minimum corresponding energy, and therefore, improved sustainability

SPEED Concept of targeted design

Definition of driving force

Separation of compound i from compound j

$$y_i = x_i \alpha_{ij} / (1 + x_i (\alpha_{ij} - 1))$$

$$F_{Di} = y_i - x_i$$

= $x_i \beta_{ij} / (1 + x_i (\beta_{ij} - 1))$
- x_i
 $\beta_{ij} = f(T, P, \underline{x}, \underline{y}, \underline{\phi})$

Energy or work needed to perform an operation is inversely proportional to the driving force

SPEED Definition of Driving Force - D_{ij}

D_{ij} for 4 types vapor-liquid separation range

Theory: D_{ij} is inversely proportional to energy consumption and directly proportional to separability

SPEED Example: VLE based separation using D_{ij}

 $\begin{array}{lll} \hline Typical 2-Phase VLE-Model \\ y_i = x_i \ \alpha_{ij}/[x_i \ (\alpha_{ij} - 1) + 1] & \text{w.r.t. relative volatility} \\ \hline \\ Fquilibrium condition & D_{ij} = x_i \ \alpha_{ij} \ /[x_i \ (\alpha_{ij} - 1) + 1] - x_i & \text{w.r.t. driving force} \\ \hline \\ Mass Balance & Z \ z_i = V \ y_i + L \ x_i & i = 1, 2, \dots c \\ or & y_i = (R + 1) \ z_i - R \ x_i & \text{where } R = L/V \\ \hline \\ D_{ij} = (R + 1) \ (z_i \ -x_j) \end{array}$

SPEED Example: VLE based separation using D_{ii}

When $D_{ii} = 0$, there is no separation and $z_i = x_i$

When L = 0 or $V = \infty$, R = L/V = 0, $D_{ij} = z_i - x_i$

When $x_i = 0$, $D_{ij} = (R + 1) z_i$

SPEED Separation of Binary Mixtures by Distillation

Component Mass Balance Overall $\mathbf{F} \mathbf{z}^{\mathbf{F}} = \mathbf{D} \mathbf{x}^{\mathbf{D}} + \mathbf{B} \mathbf{x}^{\mathbf{B}}$ **Rectifying section** $y_{n+1} = L_n / V_{n+1} x_n + D / V_{n+1} x^D$ $y = [R/(R+1)] x + [1/(R+1)]x^{D}$ **Stripping section** $y_{m+1} = L_m / V_{m+1} x_m - B / V_{m+1} x^B$ $y = [(V_{B}+1)/V_{B}] x - 1/(V_{B}+1)]x^{B}$ **Equilibrium relation** $y_i = x_i \alpha_{ii} / (1 + x_i (\alpha_{ii} - 1))$

SPEED Separation of Binary Mixtures by Distillation

SPEED Concept of targeted design

Driving force versus reverse design

Given a mixture to be separated into two products in a distillation column with N trays. What is the optimal (w.r.t the costs of operation) feed plate location and the corresponding reflux ratio for different product purity specifications ?

SPEED Relation between α_{ij} , D_{ij} (max), number of stages

Max $FD_i \equiv d(D_{ij})/dx_i = 0 = d(x_i \alpha_{ij} / (1 + x_i (\alpha_{ij} - 1)))/dx_i - 1$

Every α_{ij} has a corresponding D_{ij}(max) & x_i (max), which has a corresponding NP, NF, xD_i, xB_i

SPEED Identification of design targets

	FDi _{Max}	Τ	X _{i, Max}	Limit X _{Fee}	a X _{LK Bist}	XI	KBot	RRMan	C	RR _{Min} *C	Nideal]	
	0.045		0.0		0.995	0	.005	9.89	1.5	14.83	96]	
	1 1105	<u> </u>			~ ~ ~ ~	<u> </u>		0.005	1.5	14.36	71	-	
	0.065		0.45		0.2< X _{F.LK} < 0.8			0.991	1.5	13.33	 	-	
								0.98	1.5	11.0	67	1	
								0.95	1.5	10.65	50	1	
								n 9n	1.5	9.96	38		
								0.007	1.5	8.58	29		
	0.101		0.44		0.2< Xere< 0.8			0.995	1.5	6.52	44	-	
								0.98	1.5	6.08	25	1	
						0.95		1.5	5.33	19	1		
						ŀ		0.00	1.5	4.41	31		
								0.90	1.5	4.26	23		
	0.146				0.2< X< 0.8			0.995	1.5	3.95	18	-	
			I 0.	42				0.98	1.5	3.53	27	1	
						F		0.05	1.5	3.40	20	1	
						H		0.90	1.5	3.13	15]	
			7.33 ' î.5		<u>1.5</u>	11.0 ^{^^}		<u> </u>	7				
	0.195		0.02		7.10			1.5		10.65		0	
]		0.05		6.64			1.5	9.96		3	8	
	0.225		0.10	10 5.7			1.5			8.58		9	
	1		0.00;	5	4.50			1.5		6.74	4	4	
	0.02			4.35			1.5		6.52	3	3		
0.268			0.05	0.05		4.05		1.5		6.08		25	
	0.382 0.10			3.56			1.5		5.33		19		
			0.00;	5	2.94		1.5			4.41		31	
	0.02		2.84			1.5		4.26		3			
	0.478		0.05		2.63			1.5		3.95	1	8	
			0.10		2.29			1.5		3.44	1	4	

Chemical product centric sustainable process design - Lecture 3

SPEED Simple and fast reverse design method

- 1. Given a mixture to be separated by distillation
- 2. Select a pressure and calculate the D_{ij} for all pairs of binary mixtures (ordered w.r.t. boiling point)
- Identify the αij and from it, D_{ij} (max), x_i (max) for specific products xD_i and xB_i
 - Use the table of α_{ij}, D_{ij} (max), x_i (max), NP, NF,
 To read out the remaining design variables

Given:

Separation binary mixture of butane and i-butane; P= 5 atm; NP = 60

Solution:

Calculate α_{ij} at 5 atm = 1.33 From Figure, obtain D_{ij} (max) = 0.074; x_i (max) = 0.45 Select $X_{B,HK}$ = 0.995 & $X_{D,LK}$ = 0.995 NF = 60 (1- 0.45) = 33 From Table, find RR_{min} = 6.4

SPEED Driving force based design – Complex columns

Specify: top and bottom compositions. Determine: Dx (NF), Ds (NS) and RRmin.

SPEED Driving force based design – Complex columns

Chemical product centric sustainable process design - Lecture 3

SPEED Synthesis & Design of Distillation Trains

Order the driving force diagrams in terms of $f_{ij}|_{max}$; configure the distillation train in terms of $f_{ij}|_{max}$; design each distillation column in terms intersection on $D_y D_x$ line.

SPEED Hybrid Separation: Driving force

Secondary Separation Efficiency, Methanol MTBE

Separation by single distillation operation not feasible; hybrid separation schemes (solvent based extraction or distillation plus pervaporation or pressure swing distillation) feasible

SPEED Hybrid Separation: Optimal design

Distillation plus pervaporation requires 34.5 % less energy if the product from the first distillation = 62% MTBE. Distillation columns in both schemes optimized in terms of intersection of operating lines Targeted reverse process design & concept of process group based flowsheet synthesis:

- Driving force based separation process design
- Solvent-based environmentally acceptable process design
- Process group based flowsheet synthesis

Process groups based flowsheet synthesis SPEED

Simultaneous product-process design

Group contribution approach for synthesis/design of molecules as well as process flowsheets

Atomic-groups are used to design molecules while process-groups are used to design flowsheets

We need process groups (PG) to represent the process flowsheet

A process-group ensures a satisfied mass-balance
Connectivity is component, P and T dependent

L. d'Anterroches, PhD-Thesis, 2005

Idea of GC Based Process Property Model

We need PGs to represent the process flowsheet

Idea of GC Based Process Property Model

We need PGs to represent the process flowsheet

Idea of GC Based Process Property Model

We need PG parameter tables & GC-based property model!

Energy index for distillation column process-group

$$E_x = \sum_{k=1}^{n=NG} Q_k = \sum_{k=1}^{n=NG} \left(\frac{1+p_k}{d_{ij}^k} \times a_k + A \right)$$

- p_k : Topology factor
- a_k : Regressed contribution of PG k
- d_{ij}^k: Driving force between the 2 key components
- A: Regressed constant

Also, similar models for reactors; solvent-based extraction; membrane-based separation has been developed

L. d'Anterroches, PhD-Thesis, 2005

Integration of product-process design **SPEED**

Simultaneous product-process design

AB ? ABC — AB С ABC-С p1 p2 p38.2 A/B A/C 1.1 ... 1. Problem definition -2. Problem analysis → АВС -►AB ABC -С AB AB C 3. Process-group 4. Synthesis and test selection and initialization of the alternatives T,P, <u>x</u> AB 6. Design with reverse -Rank and selection simulation approach of the alternatives WAR

T.P. x

8. Final verifications

7. Post analysis of -> designed alternatives

#1

T.P.

Groups to represent operations

Table 1: List of currently available process-groups (PG)

Operation	Examples of Process-Groups
Distillation column	(A/BC), (ABC/DE)
Solvent based azeotropic distillation	(cycA/B)
Flash separation	(fABC/BCD)
Kinetic-model based reactor	(rABC/nE/pABCD)
Fixed conversion reactor	(rABC/nE/pABCD)
Pressure swing distillation	(swA/B)
Polar molecular sieve based separation	(pmsABC/D)
Molecular sieve based separation	(msABC/D)
Liquid membrane based separation	(lmemABC/D)
Gas membrane based separation	(gmemABC/D)
Crystallization	(crsABC/D)
Adsorption	(abEAB/eF/EABF/EF)

Method to represent flowsheets Algorithm for flowsheet structures generation **Evaluation of flowsheets: Property model**

L. d'Anterroches, PhD-Thesis, 2005

SPEED Case Study: Distillation Sequence

An example from literature

General notation system SPEED

SMILES & SFILES N#CN=C(NC)NCCSCC1NC=NC1=C

(iAD)(rAD/pABCDE)<1<2(fAB/ABCDE)1[(AB/CDE)(oAB)](C/DE)[oC)](D/E)2(oE)

(H2)(1)<1(H2I)2(5)4<3(1)>1<6<5[(3)[(N2I)3]<(n2)](6)[NH1)(9)5<2(NH3I)(11)6(NH3)]<(N2H2I)<4

SPEED Summary: Targeted Process Design

- A systematic methodology for targeted process design matching the needs of specific products has been presented together with examples.
- Use of the concept for design of processes using solvents, processes using the maximum available driving force, & for generating and evaluating process flowsheets (CAFD) has been highlighted.