Lecture 3: Mass Balance & Flowsheet Decomposition

Chapters 3, 7-8 (Textbook) plus additional material

Part-1: Main concepts & mass balance

Part-II: Method for flowsheet decomposition

Part-III: Case-study (methods for design decision making plus application of simulator for mass balance)

Course 28350 (Spring 2017)

Steady state process simulation - solve algebraic equations

Course: Process Design Principles & Methods, L3, PSE for SPEED, Rafiqul Gani

Two ways to perform mass balance simulations

- •Use a process simulator (see PROII manual)
- •Build your own simulator (chapters 3, 7-8) plus new chapter (supplied)
 - Derive the model equations
 - •Use a suitable solver to solve the model equations

Both alternatives will require you to specify* –

- •The flowsheet
- Variables representing the input streams
- •Parameters for all unit modules (reactor, stream calculator, divider)
- * By making design decisions on variables that need to be specified

Some Definitions & Concepts

Flowsheet Decomposition

- * Identify partitions
- * Identify recycle-loops
- * Determine tear-streams
- * Determine calculation order

Equation Ordering

- * Rearrange model equations
 - * Identify partitions
 - * Determine sparse pattern

Decomposition of process simulation problem into sub-tasks

Course: Process Design Principles & Methods, L3, PSE for SPEED, Rafiqul Gani

Flowsheet for cyclohexane production - What are we solving?

Course: Process Design Principles & Methods, L3, PSE for SPEED, Rafique Gani

The objective is to fill-out all the stream summary table through mass and then mass-energy balance!

Variables		Streams						
	S1	S2	S3	S4	S5	•••••	S10	
$\mathbf{f_{1,j}}$								
$\mathbf{f}_{2,\mathbf{j}}$								
$\mathbf{f}_{3,\mathbf{j}}$								
$\mathbf{f_{4,j}}$								
T _i								
P _i								

All streams are defined by NC+2 variables (component flows, T & P)

NC=4 (*H*2, *CH*4, *C*6*H*6, *Cyclohexane*)

Flowsheet for cyclohexane production – Mass Balance

The objective is to fill-out the stream summary table! Which stream variables are known? x indicates a specified variable.

Variables		Streams							
	S1	S2	S3	S4	S5	S8	S9	S10	
$\mathbf{f}_{1,\mathbf{j}}$	X	X							
$\mathbf{f_{2,j}}$	X	X							
$\mathbf{f}_{3,\mathbf{j}}$	X	X							
$\mathbf{f_{4,j}}$	X	X							
$\mathbf{F_j}$									

For mass balance: Number of streams (NS) = 8; Number of independent variables = NC*NS; Number of known variables = 2*NC; Number of unknown variables = 6*NC; NC is the number of compounds; subscript j indicates any stream j

1. MB-model: Simple Models for Mass Balance (based on text-book chapter 3)

Note: Splitter in PROII is called stream calculator

Note: A flash or component splitter can use the same model as divider/splitter where ξ_{jk} (recovery of component k) is specified for each compound k

1. MB-model: Simple Models for Mass Balance (for each component i): General derivation

Note: A flash or component splitter can use the same model as divider/splitter where ξ_{ji} (recovery of component i) is specified for each compound i

2. Which variables to specify? That is, all decision variables (module parameters).

Note: A flash or component splitter can use the same model as divider/splitter where ξ_{iU} (recovery of component i) is specified for each compound i

3. Solve the model equations. Derive a solution strategy

The full-model (for mass balance only)

Mixer:

$$f_{i,\mathrm{NM+1}} = \Sigma_j \ f_{ij}$$

for
$$i=1,NC$$
; $j=1,3$; $NM = 3$

3a. Collect all the model equations

Reactor:

$$\mathbf{f}_{i5} = \mathbf{f}_{i4} + \gamma_i \; \eta_k \; \mathbf{f}_{k4}$$

for
$$i=1,NC$$
; $k=C6H6$

Stream calculator:

$$\mathbf{f}_{i8} = \xi_{iS} \mathbf{f}_{i5}$$

$$\mathbf{f}_{i9} = (1 - \xi_{iS}) \mathbf{f}_{i5}$$

Dvider:

$$f_{i10}=\xi_{iD}\ f_{i9}$$

for
$$i=1$$
, NC

3d. Derive the

$$f_{i3}$$
 = (1 - $\xi_{iD})f_{i9}$

for i=1, NC;
$$\xi_{1D}$$
= ξ_{iD} = ξ_{NCD}

(1)

3. Solve the model equations. 3b - Analyze the model

Equations:	Number					
Eq. 1	NC					
Eq. 2	NC					
Eq. 3	NC					
Eq. 4	NC					
Eq. 5	NC					
Eq. 6	NC					
Total: NE	6*NC					
Number of Variables:						
Component flow-rates: \underline{f}_1 , \underline{f}_2 , \underline{f}_3 , \underline{f}_4 , \underline{f}_5 , \underline{f}_8 , \underline{f}_9 , \underline{f}_{10}	8*NC					
Reactor parameters: γ , η_k	NC+1					
Stream calculator parameters: ξ _S	NC					
Divider parameters: ξ _D	NC					
Total: NV	11*NC+1					
Degrees of freedom: NV - NE	5*NC+1					
Variables to specify (decisions): \underline{f}_1 , \underline{f}_2 (2NC process	Variables to specify (decisions): \underline{f}_1 , \underline{f}_2 (2NC process variables); γ , η_k , $\underline{\xi}_S$, $\underline{\xi}_D$ (3NC+1 equipment parameters)					
Unknown variables: \underline{f}_3 , \underline{f}_4 , \underline{f}_5 , \underline{f}_8 , \underline{f}_9 , \underline{f}_{10} (6NC process variables)						

Course: Process Design Principles & Methods, L3, PSE for SPEED, Rafiqul Gani

15

Known Data for Cyclohexane Process*

Unit/Stream	Specifications	Specified value
Reactor	Reaction, stoichiometric coefficients	$C_6H_6 + 3H_2 \rightarrow C_6H_{12}$
	(v) , conversion (X_k) , key component	\underline{v} (-3, 0, -1, 1); X_k (0.97, $k=3$)
	(k)	
Separation	Component split-fractions in	₫s (1.0, 1.0, 0.0, 0.0)
	overhead product (క్ష్మ్)	
Purge	Stream-divider split fraction (β_D)	<u>B</u> _D (0.025)
Feed stream 1	Component flow rates (f1, kmol/hr)	f1 (0, 0, 45.36, 0)
Feed stream 2	Component flow rates (f2, kmol/hr)	f2 (146.25, 3.75, 0, 0)

^{*} See variable definitions in Eqs. (7.1) (7.6)

(Eqs. 1-6)

3. Solve the model equations. 3c - Analyze the incidence matrix

<u>+1</u>												
	$\underline{\mathbf{f}}_1$	<u>f</u> 2	γ	$\eta_{ m k}$	ξs	ξD	<u>f</u> 5	<u>f</u> 8	<u>f</u> 9	$\underline{\mathbf{f}}_{10}$	<u>f</u> ₃	$\underline{\mathbf{f}}_{4}$
Eq. 2			*	*			(*)					*
Eq. 3					*		*	(*)				
Eq. 4					*		*		(*)			
Eq. 5						*			*	(*)		
Eq. 6						*			*		(*)	
Eq. 1	*	*									*	(*)

3. Solve the model equations. 3d - Derive solution strategy

Solve all the equations simultaneously, or, solve them sequentially

3. Solve the model equations. 3c - Analyze the incidence matrix

	<u>f</u> 1	<u>f</u> 2	γ	η_k	ξs	ξD	<u>f</u> 5	<u>f</u> ₈	<u>f</u> 9	<u>f</u> ₁₀	<u>f</u> ₃	<u>f</u> ₄
Reactor			*	*			(*)					*
SC					*		*	(*)				
SC					*		*		(*)			
Divider						*			*	(*)		
Divider						*			*		(*)	
Mixer	*	*									*	(*)

3. Solve the model equations. 3d - Derive solution strategy

Solve all the equations simultaneously, or, solve them sequentially

Summary of solution strategies: modular versus simultaneous

x represents variables of the connecting streams

Concepts: flowsheet decomposition & equation ordering

How many partitions?

How many recycle loops?

How many tear streams and which are they?

Flowsheet Decomposition

Flowsheet Decomposition

How many recycle loops? 1

How many tear streams and which are they? 1; any stream from 2,3,4,7

Solve (for tear-stream = 2) unit 2, unit 3, unit 4, unit 1; after convergence, solve unit 5

Method for flowsheet decomposition & deriving a calculation sequence

- Convert flowsheet into signal flowgraph (digraph)
- Create a table of nodes and precursers
- Follow the reduction rules
 - Eliminate nodes with single precursers
 - Replace eliminated nodes in all their occurances in the list of precursers, by their precursers
 - Identify self-loops (node appears in its precurser list) or two-way loops
 - Cut nodes (cut a node from the self-loop and eliminate them from the list)
 - Create another list of precursers and continue until all nodes have been eliminated

Nodes	Precursers (1)	
1	4	
2	3, 1	
3	2, 6	
4	2, 6	
5	4	
6	7	
7	5, 8	
8	7	

Nodes	Precursers (1)	Precur. (2)
1	4	
2	3, 1	3, 4
3	2, 6	2, 7
4	2, 6	2, 7
5	4	
6	7	
7	5, 8	4,7 cut
8	7	

Nodes	Precursers (1)	Precur. (2)	Precur. (3)	
1	4			
2	3, 1	3, 4	2, 2	
3	2, 6	2, 7	2	
4	2, 6	2, 7	2	
5	4			
6	7			
7	5, 8	4, 7 cut		
8	7			

Flow-diagram for Sequential Modular Approach

Tutorial Exercise in Class (find the minimum number of tear streams)

30

Signal flowgraph based technique (another example)

Signal flowgraph based technique (another example)

Nodes	Precursers
1	5
2	1 5 5 6
3	5
4	5
5	б
6	7,18 8,20
7	8, 20
8	2, 3,9 10
9	10
10	8, 20
11	8, 20
12	8, 20 8, 20 11
13	8, 20
14	4
15	14
16	15
17	22,25
18	16, 17
19	22, 25 16, 17 22, 25
20	19
21	8, 20
22	21
23	21
24	22, 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	8, 20 4 14 15 22, 25 16, 17 22, 25 19 8, 20 21 21 22, 25 24, 27 24, 27 28 12, 13, 23, 26, 31 28
26	24, 27
27	28
28	12, 13, 23, 26, 31
29	28
30 31	12, 13, 23, 26, 31
31	29, 30
	·

1. Eliminate nodes with single precursers and create a new list of precursers

2. Locate self-loops; cut (or two-way loops) & eliminate node; for more than one self-loop (two-way loops), cut the one with the largest number of precursers

Nodes	Precursers	Precursers (1)
1	5	
2	1	
2 3 4 5 6	5	
4	5	
5	6	
	7, 18	7, 18
7	8, 20	8, 19
8	2,3,9	6, 10
9	10	
10	8, 20	8, 19
11	8, 20	8, 19
12	11	
13	8, 20	8, 19
14	4	
15	14	
16	15	
17	22,25	21,25
18	16, 17 22, 25	6, 17 21, 25
19		21, 25
20	19	
21	8, 20	8, 19
21 22 23	21	
23	21	
24	22,25	21,25
25 26	24,27	24, 28
26	24, 27 24, 27	24, 28 24, 28
27	28	
28	12, 13, 23, 26, 31	11, 13, 21, 26, 31
29	28	
30	12, 13, 23, 26, 31	11, 13, 21, 26, 31
31	29,30	28,30 32

Signal flowgraph based technique (another example)

Nodes	Precursers	Precursers (1)
1	5	
3	1	
3	5	
4	5	
5	6	
	7,18	7,18
7	8.20	8, 19
8	2,3,9 10	6, 10
9	10	
10	8,20 8,20	8, 19
11	8, 20	8, 19
12	11	
13	8, 20	8, 19
14	4	
15	14	
16	15	
17	22, 25	21,25 6,17 21,25
18	16,17	6, 17
19	22, 25	21, 25
20	19	
21	8, 20	8, 19
21 22 23	21	
	21	
24	22, 25	21, 25 24, 28 24, 28
25	24, 27 24, 27	24, 28
26	24, 27	24, 28
27	28	
28	12, 13, 23, 26, 31	11, 13, 21, 26, 31
29	28	
30	12, 13, 23, 26, 31	11, 13, 21, 26, 31
31	29,30	28, 30

Nodes	Precursers	Precursers (1)	Self-loop pairs	Precursers (2)
1	5			
2	1			
3	5			
4	5			
2 3 4 5 6	6			
	7, 18	7,18	(1)	7, 18
7	8, 20	8, 19		8, 19
8	2, 3,9	6, 10	(2)	6, 10
9	10			
10	8, 20	8, 19	(2)	8, 19
11	8, 20	8, 19		8, 19
12	11			
13	8, 20	8, 19		8, 19
14	4			
15	14			
16	15			
17	22, 25	21,25		21, 25
18	16, 17	6, 17	(1)	6, 17
19	22, 25	21,25	(3)	21,25
20	19			
21	8, 20	8, 19		8, 19
22 23	21			
23	21			
24	22, 25	21, 25	(4)	21, 25
25	24, 27	24, 28	(4)	24
26	24, 27	24, 28	(5)	24
27	28			
28	12, 13, 23, 26, 31	11, 13, 21, 26, 31	(5), (6) cut 28	C
29	28			
30	12, 13, 23, 26, 31	11, 13, 21, 26, 31	(6),(7)	11, 13, 21, 26, 30
31	29,30	28,30	(6)	30 55

Nodes	Precursers	Precursers (1)	Self-loop pairs	Precursers (2)	Precursers (3)
1	5				
3	1				
3	5				
4	5				
5	6				
6	7,18	7,18	(1)	7,18	7,18
7	8,20	8, 19		8, 19	8,21
8	2,3,9	6, 10	(2)	6, 10	6, 10
9	10				
10	8,20	8, 19	(2)	8, 19	8,21
11	8,20	8, 19		8, 19	8,21
12	11				
13	8,20	8, 19		8, 19	8, 21
14	4				
14 15	14				
16	15				
17	22,25	21,25		21,25	21
18	16, 17	6, 17	(1)	6, 17	6, 21
19	22,25	21,25	(3)	21,25	21
20	19				
21	8,20	8, 19		8, 19	8,21
22	21				
23	21				
24	22,25	21,25	(4)	21,25	21, 24 Cut3
25	24, 27	24, 28	(4)	24	
26	24, 27	24, 28	(5)	24	
27	28				
28	12, 13, 23, 26, 31	11, 13, 21, 26, 31	(5), (6) cut 1	C	C
29	28				
30	12, 13, 23, 26, 31	11, 13, 21, 26, 31	(6),(7)	11, 13, 21, 26, 30	11, 13, 21, 30Cut2
31	29,30	28,30	(6)	30	

Cut1: 28

Cut2: 30

Cut3: 24

Nodes	Precursers	Precursers (1)	Self-loop pairs	Precursers (2)	Precursers (3)	Precursers (4)	Precursers (5&6)
1	5						
2	1						
3	5						
4	5						
5	6						
6	7,18	7,18	(1)	7,18	7,18	7,18	8,6 Cut 5
7	8, 20	8, 19		8, 19	8,21	8, 21	8
8	2, 3,9	6, 10	(2)	6, 10	6, 10	6, 10	6,8 Cut 6
9	10						
10	8, 20	8, 19	(2)	8, 19	8, 21	8, 21	8
11	8, 20	8, 19		8, 19	8, 21	8, 21	8
12	11						
13	8, 20	8, 19		8, 19	8, 21	8, 21	8
14	4						
15	14						
16	15						
17	22, 25	21,25		21, 25	21		
18	16, 17	6, 17	(1)	6, 17	6, 21	6, 21	6
19	22, 25	21, 25	(3)	21,25	21		
20	19						
21	8, 20	8, 19		8, 19	8, 21	8, 21 Cut4	C
22 23	21						
	21						
24	22,25	21,25	(4)	21,25	21, 24 Cut3	С	C
25	24, 27	24, 28	(4)	24			
26	24, 27	24, 28	(5)	24			
27	28						
28	12, 13, 23, 26, 31	11, 13, 21, 26, 31	(5), (6) cut 1	C	C	С	C
29	28						
30	12, 13, 23, 26, 31	11, 13, 21, 26, 31	(6),(7)	11, 13, 21, 26, 30	11, 13, 21, 30Cut2	С	C
31	29, 30	28, 30	(6)	30			

Cut 4: 21; Cuts 5 & 6: 6 & 8; List of tear streams: 6, 8, 21, 24, 28, 30

Signal flowgraph based technique (another example)

List of tear streams: 6, 8, 21, 24, 28, 30

Ethanol Process: Case Study (from Textbook)

FIGURE 3.1 Ethanol flowsheet.

- In order to perform mass balance (MB) what do we need?
- 1. Models for each unit operation?
- 2. Identify which variables need to be specified?
- 3. Derive solution strategy
- 4. Solve model equations (simulation) 4.1 specify variables; 4.2 solve equationa
- 5. Verify if design objectives are satisfied

Start: Redraw flowsheet for MB-model - original flowsheet

Start: Redraw flowsheet for MB-model: Redrawn flowsheet

Use only mixers, reactors (conversion reactor), dividers (splitters) and splitters (stream calculators)!

2. Analyze model to locate specified variables

If all the variables marked in blue are known (decisions), then all other variables representing the flowhseet (MB-model) can be calculated!

3. Determine a calculation strategy: Flowsheet decomposition

How should we solve the MB-model equations? How should we set-up the simulation problem for the simulator? Given, all variables marked in green, calculate all other variables

3. Process Flowsheet Decomposition & Tearing

3. Determine a calculation strategy: Flowsheet decomposition

How many recyle loops?

How many tear streams?

Calculation order?

3. Determine a calculation strategy: Flowsheet decomposition

How many recyle loops? 3

How many tear streams? Stream 1

Calculation order? Guess μ_1 , then solve units 2,3,4a,4b,5; 6,7,8,9,1, then check $_{44}$ calculated μ_1

4.1 How to make the design decisions (mass balance)?

Feed streams: raw material, solvents, process fluids

Equipment

Equipment parameters

Reactor (conversion, reaction stoichiometry)

Stream calculators (compound recoveries)

Divider-purge (divide factor)

Others

Absorber, solvent-based distillation, ...

Solvent, solubility

Membrane based operation

membrane (permeability)

4.1 Specified Variables for Ethylene to Ethanol Process Mass Balance

<u> </u>								
	ζFlash	ξAbs	$\xi_{Split} = \beta_{D}$	5Dist-1	5Dist-2	5Dist-3	5Dist-4	ŠDist-5
Ethylene	0.95	1	0.995	1	1	1	-	-
Propylene	0.9	1	0.995	1	1	1	-	-
Methane	1.0	1	0.995	1	1	1	•	-
Ethanol	0.15	0.01	0.995	1	0	1	0.99	1
Isopropanol (IPA)	0.0	0.0	0.995	1	0	0	-	-
Water	0.0	0.0	0.995	0.1	0	0.33	0	1
Diethyl- ether (DEE)	0.5	0.01	0.995	1	1	1	-	-
Ethylene Glycol (EG)	0.0	0	0.995	0	0	0	0	0

Note: Same values of $\xi_{Split} = \beta_D$ for all components indicate a stream-divider (splitter)

4.2 Set-up the simulation problem in Pro-II or ICAS or EXCEL

How many recyle loops? 3

How many tear streams? Stream 1

Calculation order? Guess μ_1 , then solve units 2,3,4a,4b,5; 6,7,8,9,1, then check calculated μ_1

4.2 Mass balances for Ethanol Process Flowsheet - PROII

4.2 Mass balances for Ethanol Process Flowsheet - EXCEL

4.2 Mass balances for Ethanol Process Flowsheet - MoT

.

6. Verify if flowsheet design is OK

Check if conservation of mass is satsified? If yes, check the following:

The component flow-rates of outlet streams – do they satisfy the specifications?

Check the solvent loss (if solvents are used)

Check the emission for non-product outlet streams – are they likely to cause enviornmental problems?

•••••

If no, check the model and/or model specifications (simulator specifications)

Additional material on finding values (design decisions) for specified variables

 $EL + W \rightarrow EA7\%$ conversion/pass EL to EA (η_1) $PL + W \rightarrow EA0.7\%$ conversion/pass PL to IPA (η_2) $2EA \leftrightarrow DEE + W$ Equilibrium controlled, K(T, P) = 0.2

Divider Model

$$\mu_{51} = (1 - \xi_5) \mu_{41}$$

$$\mu_{52} = \xi_5 \ \mu_{41}$$

- Value of ξ_5 effects the recycle flow μ_{51}
- Select a value between 0 0.1 (as an initial estimate

Component Splitter model (for component k)

$$\mu_{31}^k = \xi_{3k} \mu_2^k$$
; vapor (or light product)

 $\mu^k_{32} = (1 - \xi_{3k})\mu^k_2$; liquid (or heavy product)

- Use the method given in the book
- Perform a quick (single –stage) flash simulation

55

Case 1: ξ_n and P (or T) Fixed

Hand calculation

- a. For a specified ξ_n and P (or T), guess T (or P).
- **b.** Calculate K_{ν} , $\alpha_{\nu \alpha}$ at specified T.
- c. Evaluate $\xi_k = \alpha_{k/n} \xi_n/(1 + (\alpha_{k/n} 1)\xi_n)$ for each component k.
- d. Reconstruct a mass balance and calculate mole fractions.

$$\begin{aligned} v_k &= \xi_k f_k & y_k &= v_k / \sum v_i \\ l_k &= (1 - \xi_k) f_k & x_k &= l_k / \sum l_i \end{aligned}$$

e. For T fixed, $P = \frac{\overline{\alpha}}{\alpha_{k/n}} P_k^0(T)$.

For P fixed, solve for T from $P_k^0(T) = \alpha_{k/n} P/\alpha$.

F, f T, P Flash or 2-phase separator L, I

Case 2: T and P Fixed _____ Using software

- a. For a specified T and P, pick a key component n and guess ξ_n .
 - Follow steps b, c, and d of algorithm for Case 1.
- e. If the bubble point equation is satisfied: $\alpha = P\alpha_{kln}/P_k^0$, stop. Otherwise, reguess ξ_n , and go to step c. (Simple iterative methods, such as the secant algorithm in Chapter 8, can be used to obtain convergence for ξ_n .)

Case 3: ϕ and P (or T) Fixed

- a. For a specified $\phi = V/F$ and P (or T)
- b. Guess T (or P), calculate $\alpha_{k/n}$, K_k and define $\theta = K_n \phi/(1 \phi) = v_n/l_n$ Define $\xi_n = \theta/(1 + \theta)$.

Then follow steps c and d of the previous algorithm.

e. If the bubble point equation is satisfied: $\alpha = P\alpha_{k/n}/P_k^0$, stop. Otherwise, reguess T (or P), and go to step b. (Simple iterative methods, such as the secant algorithm can be used to obtain convergence for ξ_n .)

Specify F, \underline{f} and any two of T, P, V/F, v_k/f_k

See example 3.2

PT-flash related decisions: short-cut calculations

4. Calculate ξ_{3K} using the formula given in the book (see Eq. on slide 44)

Absorber related decisions: short-cut calculations

Absorber and Stripper Preliminary Calculations

Mass balance model for absorber/stripper has 4 degrees of freedom: P, T, key component recovery and liquid rate

That is, the designer needs to select values for the 4 variables and values of all other variables can be calculated if the component separation (split) factors are known

$$\xi_{A1,k} = v_{1,k}/v_{N+1,k} = 1/\beta_{N-1,k} = 1 - \xi_{A2,k}$$
; top product

$$\xi_{A2,k} = l_{N,k}/v_{N+1,k} = 1 - (1/\beta_{N,k}) = 1 - \xi_{A1,k}$$
 ; bottom product

Absorber related decisions: short-cut calculations

4. Calculate $\xi_{42,k}$ using the formula given in the book (see slide 44)

Distillation related decisions: short-cut calculations

Calculation of component separation factors for distillation columns

Decide on values for $\zeta_k = d_k/f_k$

Calculate $\alpha_{lk/hk}$

Calculate N_m by Fenske Equation

Calculate
$$\xi_k = (\alpha_k)^{Nm} \zeta_{hk} / [1 + (\alpha_k)^{Nm}] \zeta_{hk}$$

Set $N_m = 1$ for flash

Component type

- 1. Lighter than light key
- 2. Light key
- 3. Distributed component
- 4. Heavy key
- 5. Heavier than heavy key

ξ

1,

$$(\alpha_{k/hk} > 1, \text{ as } N_m \to \infty, \xi_k = 1)$$

 ξ_{lk} fixed (e.g., 0.99)
from equation for ξ_k

$$\xi_{hk}$$
 fixed (e.g., 0.01)

$$(\alpha_{k/hk} < 1, \text{ as } N_m \to \infty, \, \xi_k = 0)$$

Distillation related decisions: rule (insights) based decisions

M EL PL DEE EA**IPA** W7.dist ξ_k 1.0 1.0 1.0 1.0 0.1 0.995 0.96

Recover 99.5% ethanol and remove 90% water

$$M$$
 EL PL DEE EA IPA W ξ_k 1.0 1.0 0.995 0.005 0.00 0.00 8.dist

Recover 99.5% DEE plus gases at the top and recycle and 99.5% Ethanol at the bottom

Ethanol-water azeotrope at 85.4% EA & 14.6% W (mole percent)

Recover 99.5 % azeotrope, that is, $\xi_{az} = 0.995$

9.dist

IPA in distillate is 0.1%