Lecture 3: Mass Balance \& Flowsheet Decomposition

Chapters 3, 7-8 (Textbook) plus additional material
Part-1: Main concepts \& mass balance
Part-II: Method for flowsheet decomposition
Part-III: Case-study (methods for design decision making plus application of simulator for mass balance)

Course 28350 (Spring 2017)

Steady state process simulation - solve algebraic equations

Two ways to perform mass balance simulations

-Use a process simulator (see PROII manual)
-Build your own simulator (chapters 3, 7-8) plus new chapter (supplied)
-Derive the model equations
-Use a suitable solver to solve the model equations
Both alternatives will require you to specify* -
-The flowsheet
-Variables representing the input streams
-Parameters for all unit modules (reactor, stream
calculator, divider)

* By making design decisions on variables that need to be specified

Some Definitions \& Concepts

Flowsheet Decomposition

* Identify partitions
 * Identify recycle-loops
 * Determine tear-streams
 * Determine calculation order

Equation Ordering

* Rearrange model equations * Identify partitions
* Determine sparse pattern

Decomposition of process simulation problem into sub-tasks

Task 4

Task 5

Task 6

Task 7

Course: Process Design Principles \& Methods, L3, PSE for SPEED, Rafiqul Gani

Flowsheet for cyclohexane production - What are we solving?

Course: Process Design Principles \& Methods, L3, PSE for SPEED, Rafiqu $\mathbf{S G}^{\mathbf{n}}$

The objective is to fill-out all the stream summary table through mass and then mass-energy balance!

Variables	Streams						
	S1	S2	S3	S4	S5	$\ldots \ldots$.	S10
$\mathbf{f}_{\mathbf{1}, \mathbf{j}}$							
$\mathbf{f}_{2, \mathbf{j}}$							
$\mathbf{f}_{3, j}$							
$\mathbf{f}_{4, \mathbf{j}}$							
$\mathbf{T}_{\mathbf{j}}$							
$\mathbf{P}_{\mathbf{j}}$							

All streams are defined by NC+2 variables (component flows, $T \& P$) NC=4 (H2, CH4, C6H6, Cyclohexane)

Flowsheet for cyclohexane production - Mass Balance

The objective is to fill-out the stream summary table! Which stream variables are known? x indicates a specified variable.

Variables	Streams								
	S1	S2	S3	S4	S5	S8	S9	S10	
$\mathbf{f}_{1, \mathbf{j}}$	\mathbf{x}	\mathbf{x}							
$\mathbf{f}_{\mathbf{2}, \mathbf{j}}$	\mathbf{x}	\mathbf{x}							
$\mathbf{f}_{\mathbf{3}, \mathbf{j}}$	\mathbf{x}	\mathbf{x}							
$\mathbf{f}_{4, \mathbf{j}}$	\mathbf{x}	\mathbf{x}							
$\mathbf{F}_{\mathbf{j}}$									

For mass balance: Number of streams $(N S)=8$; Number of independent variables $=$ $N C^{*} N S$; Number of known variables $=2 * N C$; Number of unknown variables $=6^{*} N C$; $N C$ is the number of compounds; subscript j indicates any stream j

1. MB-model: Simple Models for Mass Balance (based on text-book chapter 3)

$$
\begin{aligned}
& \mu_{\mathrm{R}}^{k=\mu_{\mathrm{IN}}^{\mathrm{k}}+\Sigma_{\mathrm{r}} \gamma_{\mathrm{r}, \mathrm{k}} \eta_{\mathrm{r}} \mu^{\mathrm{l(r)}}{ }_{\text {IN }}} \\
& \gamma_{\mathrm{r}, \mathrm{k}}=>\mathbf{0} ; \mathbf{o r},\langle\mathbf{0} ; \mathbf{o r},=\mathbf{0}
\end{aligned}
$$

Note: A flash or component splitter can use the same model as divider/splitter where $\xi_{j k}$ (recovery of component k) is specified for each compound k

1. MB-model: Simple Models for Mass Balance (for each component i): General derivation

$$
\begin{aligned}
& \mathbf{f}_{\mathrm{i}, \mathrm{j}+1}=\mathbf{f}_{\mathrm{i}, \mathrm{j}}+\Sigma_{\mathbf{r}} \gamma_{\mathrm{r}, \mathrm{i}} \eta_{\mathrm{r}, \mathrm{k}} \mathbf{f}_{\mathrm{k}, \mathrm{j}} \\
& \gamma_{\mathrm{r}, \mathrm{i}}=>\mathbf{0} ; \text { or, }\langle\mathbf{0} ; \text { or, }=\mathbf{0}
\end{aligned}
$$

Note: A flash or component splitter can use the same model as divider/splitter where $\xi_{j i}$ (recovery of component i) is specified for each compound i
2. Which variables to specify? That is, all decision variables (module parameters).

$$
\begin{aligned}
& \mathbf{f}_{\mathrm{i}, \mathrm{j}}=\mathbf{f}_{\mathrm{i}, \mathrm{j}}+\Sigma_{\mathbf{r}} \gamma_{\mathrm{r}, \mathrm{i}} \eta_{\mathrm{r}, \mathrm{k}} \mathbf{f}_{\mathrm{k}, \mathrm{j}} \\
& \gamma_{\mathrm{r}, \mathrm{i}}=>\mathbf{0} ; \text { or, }\langle\mathbf{0} ; \text { or, }=\mathbf{0}
\end{aligned}
$$

Note: A flash or component splitter can use the same model as divider/splitter where $\xi_{i U}$ (recovery of component i) is specified for each compound i

3. Solve the model equations. Derive a solution strategy

The full-model (for mass balance only)
Mixer:
$\mathrm{f}_{\mathrm{i}, \mathrm{NM}+1}=\Sigma_{\mathrm{j}} \mathrm{f}_{\mathrm{ij}} \quad$ for $\mathrm{i}=1, \mathrm{NC} ; \mathrm{j}=1,3 ; \mathrm{NM}=3$

3a. Collect all the model equations

Reactor:
$\mathrm{f}_{\mathrm{i} 5}=\mathrm{f}_{\mathrm{i} 4}+\gamma_{\mathrm{i}} \eta_{\mathrm{k}} \mathrm{f}_{\mathrm{k} 4} \quad$ for $\mathrm{i}=1, \mathrm{NC} ; \mathrm{k}=\mathrm{C} 6 \mathrm{H} 6$
3b. Analyze the model
Stream calculator:

Dvider:
$\mathrm{f}_{\mathrm{i} 10}=\xi_{\mathrm{iD}} \mathrm{f}_{\mathrm{i} 9}$
for $\mathrm{i}=1, \mathrm{NC}$

> 3c. Analyze the incidence matrix

3d. Derive the solution strategy

3. Solve the model equations. 3b - Analyze the model

Equations:	Number
Eq. 1	NC
Eq. 2	NC
Eq. 3	NC
Eq. 4	NC
Eq. 5	NC
Eq. 6	NC
Total: NE	6*NC
Number of Variables:	
Component flow-rates: $\underline{\mathrm{f}}_{1}, \mathrm{f}_{2}, \mathrm{f}_{3}, \underline{\mathrm{f}}_{4}, \mathrm{f}_{5}, \underline{\mathrm{f}}_{8}, \underline{\mathrm{f}}_{0}, \underline{\mathrm{f}}_{10}$	8*NC
Reactor parameters: ψ, η_{k}	NC+1
Stream calculator parameters: $\xi_{\text {s }}$	NC
Divider parameters: $\underline{\xi}_{\text {D }}$	NC
Total: NV	11*NC+1
Degrees of freedom: NV - NE	5*NC+1
Unknown variables: $\underline{\underline{f}}_{3}, \underline{\underline{f}}_{4}, \mathrm{f}_{5}, \mathrm{f}_{8}, \mathrm{f}_{9}, \underline{\mathrm{f}}_{10}$ (6NC process variables)	

Known Data for Cyclohexane Process*

Unit/Stream	Specifications	Specified value
Reactor	Reaction, stoichiometric coefficients (v), conversion $\left(X_{k}\right)$, key component (k)	$\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{12}$ $\underline{v}(-3,0,-1,1) ; X_{k}(0.97, k=3)$
Separation	Component split-fractions in overhead product $\left(\xi_{\mathrm{s}}\right)$	$\underline{\xi}_{\mathrm{S}}(1.0,1.0,0.0,0.0)$
Purge	Stream-divider split fraction $\left(\beta_{\mathrm{D}}\right)$	$\underline{\beta}_{\mathrm{D}}(0.025)$
Feed stream 1	Component flow rates $\left(f_{1}, \mathrm{kmol} \mathrm{hr}\right)$	$f_{1}(0,0,45.36,0)$
Feed stream 2	Component flow rates $\left(f_{2}, \mathrm{kmol} \mathrm{hr}\right)$	$f_{2}(146.25,3.75,0,0)$

* See variable definitions in Ege. (7.1)(7.6)
(Eqs. 1-6)

3. Solve the model equations. 3c - Analyze the incidence matrix

	$\underline{\underline{1}} 1^{1}$	$\underline{\mathrm{f}}_{2}$	γ	n_{k}	ξ s	ξ D	I_{5}	$\underline{1}_{8}$	f_{9}	$\underline{\mathbf{f}}_{10}$	$\underline{1}_{3}$	I_{4}
Eq. 2			*	*			(*)					*
Eq. 3					*		*	(*)				
Eq. 4					*		*		(*)			
Eq. 5						*			*	(*)		
Eq. 6						*			*		(*)	
Eq. 1	*	*									*	(*)

3. Solve the model equations. 3d - Derive solution strategy

Solve all the equations simultaneously, or, solve them sequentially

3. Solve the model equations. 3c - Analyze the incidence matrix

	$\underline{1}$	I_{2}	7	η_{k}	ξ s	$\xi_{\text {¢ }}$	I_{5}	I_{8}	$\underline{\mathrm{I}} 9$	I_{10}	I_{3}	I_{4}
Reactor			*	*			(*)					
SC					*		*	(*)				
SC					*		*		(*)			
Divider						*			*	(*)		
Divider						*			*		(*)	
Mixer\|	*	*									*	(*)

3. Solve the model equations. 3d - Derive solution strategy

Solve all the equations simultaneously, or, solve them sequentially

	Solve SC (Eqs. 3-4)	\longrightarrow	Solve divider (Eqs- 5-6)	\longrightarrow	Solve mixer (Eq.1)
$\hat{i}_{\text {guess } \underline{f}_{4}}$					new \underline{f}_{4}
Course: P	s Design Principles	Metho	L3, PSE for SPEE	Rafiqu	Gani 18

Summary of solution strategies: modular versus simultaneous

Solve $\underline{\mathbf{A}} \underline{\underline{x}}=\underline{b}$

Equation Oriented

\mathbf{x} represents variables of the connecting streams

Sequential Modular

Course: Process Design Principles \& Methods, L3, PSE for SPEED, Rafiqul Gani

Concepts: flowsheet decomposition \& equation ordering

How many partitions?

How many recycle loops?
How many tear streams and which are they?

Flowsheet Decomposition

Flowsheet Decomposition

How many recycle loops? 1
How many tear streams and which are they?
1 ; any stream from 2,3,4,7
Solve (for tear-stream =2) unit 2, unit 3, unit 4, unit 1; after convergence, solve unit 5

Method for flowsheet decomposition \& deriving a calculation sequence

- Convert flowsheet into signal flowgraph (digraph)
- Create a table of nodes and precursers
- Follow the reduction rules
- Eliminate nodes with single precursers
- Replace eliminated nodes in all their occurances in the list of precursers, by their precursers
- Identify self-loops (node appears in its precurser list) or two-way loops
- Cut nodes (cut a node from the self-loop and eliminate them from the list)
- Create another list of precursers and continue until all nodes have been eliminated

Flowsheet decomposition \& Calculation sequence

Signal flowgraph based technique (simple example)

Nodes Precursers (1)
1
4
2
3
4
5
6
7
8
5, 8
7

Flowsheet decomposition \& Calculation sequence

Signal flowgraph based technique (simple example)

Nodes Precursers (1) Precur. (2)
14

$\mathbf{2}$	$\mathbf{3 , 1}$	$\mathbf{3 , 4}$	
$\mathbf{3}$	$\mathbf{2 , 6}$	2,7	
$\mathbf{4}$	$\mathbf{2 , 6}$	2,7	
$\mathbf{5}$	$\mathbf{4}$		
$\mathbf{6}$	$\mathbf{7}$		
$\mathbf{7}$	$\mathbf{5 , 8}$	4,7	cut
$\mathbf{8}$	$\mathbf{7}$		

Flowsheet decomposition \& Calculation sequence

Signal flowgraph based technique (simple example)

Nodes Precursers (1) Precur. (2) Precur. (3)
1
2
3
4
5
6
7
8
4

$\mathbf{3 , 1}$	$\mathbf{3 , 4}$
2,6	2,7
$\mathbf{2 , 6}$	2,7
$\mathbf{4}$	
$\mathbf{7}$	
$\mathbf{5 , 8}$	4,7 cut
$\mathbf{7}$	

Flowsheet decomposition \& Calculation sequence

Signal flowgraph based technique (simple example)

Flow-diagram for Sequential Modular Approach

Flowsheet decomposition \& Calculation sequence
 Tutorial Exercise in Class (find the minimum number of tear streams)

Flowsheet decomposition \& Calculation sequence
 Signal flowgraph based technique (another example)

Flowsheet decomposition \& Calculation sequence

Signal flowgraph based technique (another example)

Nodes	Precpreers
1	5
2	1
3	5
4	5
5	6
6	7,18
7	8,20
8	$2,3,9$
9	10
10	8,20
11	8,20
12	11
13	8,20
14	4
15	14
16	15
17	22,25
18	16,17
19	22,25
20	19
21	8,20
22	21
23	21
24	22,25
25	24,27
26	24,27
27	28
28	$12,13,23,26,31$
29	28
30	$12,13,23,26,31$
31	29,30

2. Locate self-loops; cut (or two-way loops) \& eliminate node ; for more than one self-loop (twoway loops), cut the one with the largest number of precursers

Nodes	Precursers	Precursers (1)
1	5	
2	1	
3	5	
4	5	
5	6	7,18
6	7,18	8,19
7	8,20	6,10
8	$2,3,9$	8,19
9	10	8,19
10	8,20	
11	8,20	8,19
12	11	
13	8,20	
14	4	21,25
15	14	6,17
16	15	21,25
17	22,25	
18	16,17	8,19
19	22,25	
20	19	21,25
21	8,20	24,28
22	21	24,28
23	21	
24	22,25	$11,13,21,26,31$
25	24,27	
26	24,27	$11,13,21,26,31$
27	28	32
28	$12,13,23,26,31$	
29	28	
30	$12,13,23,26,31$	29,30
31	29,30	

Flowsheet decomposition \& Calculation sequence

 Signal flowgraph based technique (another example)| Nodes | Precursers | Precursers (1) |
| :---: | :---: | :---: |
| 1 | 5 | |
| 2 | 1 | |
| 3 | 5 | |
| 4 | 5 | |
| 5 | 6 | |
| 6 | 7,18 | 7,18 |
| 7 | 8,20 | 8,19 |
| 8 | 2,3,9 | 6,10 |
| 9 | 10 | |
| 10 | 8,20 | 8,19 |
| 11 | 8,20 | 8,19 |
| 12 | 11 | |
| 13 | 8,20 | 8,19 |
| 14 | 4 | |
| 15 | 14 | |
| 16 | 15 | |
| 17 | 22,25 | 21,25 |
| 18 | 16,17 | 6,17 |
| 19 | 22,25 | 21,25 |
| 20 | 19 | |
| 21 | 8,20 | 8,19 |
| 22 | 21 | |
| 23 | 21 | |
| 24 | 22,25 | 21,25 |
| 25 | 24,27 | 24,28 |
| 26 | 24,27 | 24,28 |
| 27 | 28 | |
| 28 | 12,13, 23, 26, 31 | 11,13,21, 26, 31 |
| 29 | 28 | |
| 30 | 12,13, 23, 26, 31 | 11,13,21, 26, 31 |
| 31 | 29,30 | 28,30 |

Nodes	Precursers.	Precursers. (1)	Self-loop pairs	Precursers (2)
1	5			
2	1			
3	5			
4	5			
5	6			
6	7,18	7,18	(1)	7,18
7	8,20	8,19		8,19
8	2,3,9	6,10	(2)	6,10
9	10			
10	8,20	8,19	(2)	8,19
11	8,20	8,19		8,19
12	11			
13	8,20	8,19		8,19
14	4			
15	14			
16	15			
17	22,25	21,25		21,25
18	16,17	6,17	(1)	6,17
19	22,25	21,25	(3)	21,25
20	19			
21	8,20	8,19		8,19
22	21			
23	21			
24	22,25	21,25	(4)	21,25
25	24,27	24,28	(4)	24
26	24,27	24,28	(5)	24
27	28			
28	12, 13, 23, 26, 31	11,13, 21, 26, 31	(5), (6) cut 28	C
29	28		\bigcirc	\bigcirc
30	12, 13, 23, 26, 31	11,13,21, 26, 31	(6), (7)	11,13,21, 26, 30
31	29,30	28,30	(6)	$30 \quad 33$

Flowsheet decomposition \& Calculation sequence

Nodes	Precursers	Precursers (1)	Self-loop pairs	Precursers (2)	Precursers (3)
1	5				
2	1				
3	5				
4	5				
5	6				
6	7,18	7,18	(1)	7,18	7,18
	8,20	8,19		8,19	8,21
8	2,3,9	6,10	(2)	6,10	6,10
9	10				
10	8,20	8,19	(2)	8,19	8,21
11	8,20	8,19		8,19	8,21
12	11				
13	8,20	8,19		8,19	8,21
14	4				
15	14				
16	15				
17	22,25	21,25		21,25	21
18	16,17	6,17	(1)	6,17	6,21
19	22,25	21,25	(3)	21,25	21
20	19				
21	8,20	8,19		8,19	8,21
22	21				
23	21				\bigcirc
24	22,25	21,25	(4)	21,25	21,2, Cut 3
25	24,27	24,28	(4)	24	\bigcirc
26	24,27	24,28	(5)	24	
27	28				
28	12, 13, 23, 26, 31	11, 13, 21, 26, 31	(5), (6) cut l	C	C
29	28				
30	12, 13, 23, 26, 31	11, 13, 21, 26, 31	(6),(7)	11, 13, 21, 26, 30	11, 13,21, 3
31	29,30	28,30	(6)	30	

Cut1: 28
Cut2: 30
Cut3: 24

Flowsheet decomposition \& Calculation sequence

Nodes	Precursers	Precursers (1)	Self-loop pairs	Precursers (2)	Precursers (3)	Precursers (4)	Precursers (5\&6)
1	5						
2	1						
3	5						
4	5						
5	6						\cdots
6	7,18	7,18	(1)	7,18	7,18	7,18	8,6 Cut5
7	8,20	8,19		8,19	8,21	8,21	$8>$
8	2,3,9	6,10	(2)	6,10	6,10	6,10	6,8 Cut 6
9	10						\square
10	8,20	8,19	(2)	8,19	8,21	8,21	8
11	8,20	8,19		8,19	8,21	8,21	8
12	11						
13	8,20	8,19		8,19	8,21	8,21	8
14	4						
15	14						
16	15						
17	22,25	21,25		21,25	21		
18	16,17	6,17	(1)	6,17	6,21	6,21	6
19	22,25	21,25	(3)	21,25	21		
20	19					\square	
21	8,20	8,19		8,19	8,21	8,21 Cut4	C
22	21					\checkmark	
23	21						
24	22,25	21,25	(4)	21,25	21,24 Cut ${ }^{\text {3 }}$	C	C
25	24,27	24,28	(4)	24			
26	24,27	24,28	(5)	24			
27	28						
28	12,13, 23, 26, 31	11,13, 21, 26, 31	(5), (6) cut l	C	C	C	C
29	28						
30	12,13, 23, 26, 31	11, 13, 21, 26, 31	(6),(7)	11, 13, 21, 26, 30	11,13,21, 30Cut2	C	C
31	29,30	28,30	(6)	30			

Cut 4: 21; Cuts $5 \& 6: 6 \& 8$; List of tear streams: $6,8,21,24,28,30$

Flowsheet decomposition \& Calculation sequence
 Signal flowgraph based technique (another example)

List of tear streams: $\mathbf{6 , 8 , 2 1 , 2 4 , 2 8 , 3 0}$

Ethanol Process: Case Study (from Textbook)

In order to perform mass balance (MB) what do we need?

1. Models for each unit operation?
2. Identify which variables need to be specified?
3. Derive solution strategy
4. Solve model equations (simulation) - 4.1 specify variables; 4.2 solve equationa
5. Verify if design objectives are satisfied

Start: Redraw flowsheet for MB-model - original flowsheet

Start: Redraw flowsheet for MB-model: Redrawn flowsheet

Use only mixers, reactors (conversion reactor), dividers (splitters) and splitters (stream calculators)!

2. Analyze model to locate specified variables

If all the variables marked in blue are known (decisions), then all other variables representing the flowhseet (MB-model) can be calculated!

3. Determine a calculation strategy: Flowsheet decomposition

How should we solve the MB-model equations? How should we set-up the simulation problem for the simulator? Given, all variables marked in green, calculate all other variables

3. Process Flowsheet Decomposition \& Tearing

3. Determine a calculation strategy: Flowsheet decomposition

How many recyle loops?
How many tear streams?
Calculation order?

3. Determine a calculation strategy: Flowsheet decomposition

How many recyle loops? 3
How many tear streams? Stream 1
Calculation order? Guess μ_{1}, then solve units $2,3,4 a, 4 b, 5 ; 6,7,8,9,1$, then check 44 calculated μ_{1}

4.1 How to make the design decisions (mass

Process

balance)?

Feed streams: raw material, solvents, process fluids
Equipment
Equipment parameters
Reactor (conversion, reaction stoichiometry) Stream calculators (compound recoveries)
Divider-purge (divide factor)

Others

> Absorber, solvent-based distillation, ...
> Solvent, solubility
> Membrane based operation
> membrane (permeability)

4.1 Specified Variables for Ethylene to Ethanol Process Mass Balance

	ξ Flash	$\xi^{\text {Abs }}$	$\begin{aligned} & \xi_{\text {Split }}= \\ & \beta \mathrm{D} \end{aligned}$	$\xi^{\text {Dist-1 }}$	$\xi^{\text {Dist-2 }}$	$\xi_{\text {Dist-3 }}$	${ }_{5}{ }^{\text {Dist-4 }}$	$\xi^{\text {Dist-5 }}$
Ethylene	0.95	1	0.995	1	1	1	-	-
Propylene	0.9	1	0.995	1	1	1	-	-
Methane	1.0	1	0.995	1	1	1	-	-
Ethanol	0.15	0.01	0.995	1	0	1	0.99	1
Isopropanol (IPA)	0.0	0.0	0.995	1	0	0	-	-
Water	0.0	0.0	0.995	0.1	0	0.33	0	1
Diethylether (DEE)	0.5	0.01	0.995	1	1	1	-	-
Ethylene Glycol (EG)	0.0	0	0.995	0	0	0	0	0

4.2 Set-up the simulation problem in Pro-II or ICAS or EXCEL

Demo will be given if time permits

How many recyle loops? 3
How many tear streams? Stream 1
Calculation order? Guess μ_{1}, then solve units $2,3,4 \mathrm{a}, 4 \mathrm{~b}, 5 ; \mathbf{6 , 7 , 8 , 9 , 1}$, then check calculated μ_{1}

4.2 Mass balances for Ethanol Process Flowsheet PROII

4.2 Mass balances for Ethanol Process Flowsheet EXCEL

21 Microsoft Excel - exmple3.xls

Ready
Calculate

4.2 Mass balances for Ethanol Process Flowsheet MoT

\# Linear Mass Balance Algorithm:	
	\# balance for Ethylene (EL)
\# Across 2.RXN	
M2_EL $=$ (1-ETA_EL) *M1_EL	
	\# Across 3.FLASH
	M31_EL = 22_EL*M2_EL
	M32_EL $=\left(1-22 _\right.$EL) ${ }^{\text {*M2_EL }}$
	\# Across 4. ABS
	M41_EL $=$ 231_EL*M31_EL
	M42_EL $=\left(1-231 _E L\right)$ *M31_EL
	\# Across 5.SPL
	M51_EL = 241_EL*M41_EL
	M52_EL $=\left(1-\mathrm{Z41}\right.$ EL) ${ }^{\text {*M41_EL }}$
\# Across 6. MIX	
M6_EL = M32_EL + M42_EL	
\# Across 7.DIST	
M71_EL = 26_EL*M6_EL	
\# Across 8.DIST	
	M81_EL = 271_EL*M71_EL

6. Verify if flowsheet design is OK

Check if conservation of mass is satsified? If yes, check the following:
The component flow-rates of outlet streams - do they satisfy the specifications?
Check the solvent loss (if solvents are used)
Check the emission for non-product outlet streams - are they likely to cause enviornmental problems?

If no, check the model and/or model specifications (simulator specifications)

Additional material on finding values (design decisions) for specified variables

Reactor related decisions - based on data

$E L+W \rightarrow E A 7 \%$ conversion/pass $E L$ to $E A\left(\eta_{1}\right)$
PL + W \boldsymbol{W} EA0.7\% conversion/pass PL to IPA (η_{2})
$2 E A \leftrightarrow D E E+W \quad$ Equilibrium controlled, $K(T, P)=0.2$

Divider related decision: Rule (insights) based

Divider Model
$\mu_{51}=\left(1-\xi_{5}\right) \mu_{41}$
$\mu_{52}=\xi_{5} \mu_{41}$

- Value of ξ_{5} effects the recycle flow μ_{51}
- Select a value between 0 - 0.1 (as an initial estimate

PT-flash related decision: analyze phase behaviour

Component Splitter model (for component k)
$\mu^{\mathrm{k}}{ }_{31}=\xi_{3 \mathrm{k}} \mu^{\mathrm{k}}{ }_{2} \quad$; vapor (or light product)
$\mu_{32}^{k}=\left(1-\xi_{3 k}\right) \mu_{2}^{k} ;$ liquid (or heavy product)

- Use the method given in the book
- Perform a quick (single -stage) flash simulation

Case ${ }^{3} \xi_{n}$ and $P($ or 7$)$ Wixed

Hand calculation

a. For a specified ξ_{n} and P (or T, guess T (or P).
b. Calculate $K_{k}, \alpha_{k / n}$ at specified T.
c. Evaluate $\xi_{k}=\alpha_{k / n} \xi_{n} /\left(1+\left(\alpha_{k / n} \sim 1\right) \xi_{n}\right)$ for each component k.
\&. Reconstruct a mass balance and calculate mole fractions.
$\begin{array}{ll}v_{k}=\xi_{k} f_{k} & y_{k}=v_{k} / \sum v_{i} \\ l_{k}=\left(1-\xi_{k}\right) f_{k} & x_{k}=l_{k} / \sum l_{i}\end{array}$
e. For T fixed, $P=\frac{\bar{\alpha}}{\alpha_{k h_{1}}} P_{k}^{0}(T)$.

For P fixed, solve for T from $p_{k}^{0}(T)=\alpha_{k / n} P / \alpha$.
Case 2: Thand P Fixed
\longleftarrow Using software
a. For a specified T and P, pick a key component n and guess ξ_{n}. Follow steps b, c, and dof algorithm for Case 1 .

e. If the bubbie point equation is satisfied: $\alpha=P \alpha_{k i n} / P_{k}^{0}$, stop. Otherwise, reguess ξ_{n} and go to step c. (Simple terative methods, such as the secant algorithm in Chapter 8 , can be used to obtain convergence for ξ_{n}.)

\&. For a specified $\phi=V / F$ and $P($ or $T)$
Specify $\mathrm{F}, \underline{\mathrm{f}}$ and any
two of T, P, V/F, $\mathrm{v}_{\mathrm{k}} / \mathrm{f}_{\mathrm{k}}$
8. Guess T (or P), calculate $\alpha_{k n}, K_{k}$ and define $\theta=K_{n} \phi /(1-\phi) \approx \nu_{n} / l_{n}$

Define $\xi_{n}=\theta /(1+\theta)$.
See example 3.2
Then follow steps c and d of the previous algorithm.
e. If the bubble point equation is satisfied: $\alpha=\beta \alpha_{k / n} / P_{k}^{0}$, stop. Otherwise, reguess T (or P), and go to step b. (Simple iterative methods, such as the secant algorithm can be used to obtain convergence for ξ_{n}.)

PT-flash related decisions: short-cut calculations

2. Calculate by using a vapor pressure model at specified T

3. Calculate by relative volatility w.r.t DEE at specified $\mathbf{T}=\mathbf{P}_{\mathrm{k}}^{\mathbf{0}} / \mathbf{P}^{\mathbf{0}}{ }_{\text {DEE }}$

M	$E L$	$P L$
2.1×10^{5}	5.5×10^{4}	11360
256.1	67.3	13.8
0.996	0.985	0.932

 Liquid at bubble point
4. Calculate $\xi_{3 K}$ using the formula given in the book (see Eq. on slide 44)

Absorber related decisions: short-cut calculations

Absorber and Stripper Preliminary Calculations

Mass balance model for absorber/stripper has 4 degrees of freedom: P, T, key component recovery and liquid rate

That is, the designer needs to select values for the 4 variables and values of all other variables can be calculated if the component separation (split) factors are known
$\xi_{\mathrm{A} 1, \mathrm{k}}=\mathrm{v}_{1, \mathrm{k}} / \mathrm{v}_{\mathrm{N}+1, \mathrm{k}}=1 / \beta_{\mathrm{N}-1, \mathrm{k}}=1-\xi_{\mathrm{A} 2, \mathrm{k}} ;$ top product
$\xi_{\mathrm{A} 2, \mathrm{k}}=\mathrm{l}_{\mathrm{N}, \mathrm{k}} / \mathrm{v}_{\mathrm{N}+1, \mathrm{k}}=1-\left(1 / \beta_{\mathrm{N}, \mathrm{k}}\right)=1-\xi_{\mathrm{A} 1, \mathrm{k}} ;$ bottom product

Absorber related decisions: short-cut calculations

2. Calculate by relative volatility w.r.t EA at specified $\mathbf{T}=\mathbf{P}_{\mathbf{k}}^{\mathbf{0}} / \mathbf{P}_{\text {DEE }}^{\mathbf{0}}$
$\mu_{03} \quad$ Vapor product

Distillation related decisions: short-cut calculations

Corasgonems type

1. Lighter than light key
2. Light key
3. Distributed component
*. Meavy key
4. Heavier than heavy key

$$
\begin{aligned}
& \quad \xi_{k k} \\
& 1, \\
& \left(\alpha_{k / h k}>1, \operatorname{as} N_{m} \rightarrow \infty, \xi_{k}=1\right) \\
& \left.\xi_{l k} \text { fixed (e.g., } 0.99\right) \\
& \text { from equation for } \xi_{k} \\
& \xi_{h k} \text { fixed (e.g., 0.01) } \\
& 0, \\
& \left(\alpha_{k / h k}<l, \operatorname{as~} N_{m} \rightarrow \infty, \xi_{l k}=0\right)
\end{aligned}
$$

Distillation related decisions: rule (insights) based decisions

	M	$E L$	$P L$	$D E E$	$E A$	$I P A$	W	
ξ_{k}	1.0	1.0	1.0	1.0	0.995	0.96	0.1	7.dist

Recover 99.5% ethanol and remove 90% water

	M	$E L$	$P L$	$D E E$	$E A$	$I P A$	W	
ξ_{k}	1.0	1.0	1.0	0.995	0.005	0.00	0.00	8.dist

Recover 99.5\% DEE plus gases at the top and recycle and 99.5\% Ethanol at the bottom

Ethanol-water azeotrope at 85.4% EA \& 14.6% W (mole percent)
Recover 99.5 \% azeotrope, that is, $\xi_{a z}=0.995$
9.dist

IPA in distillate is 0.1\%

