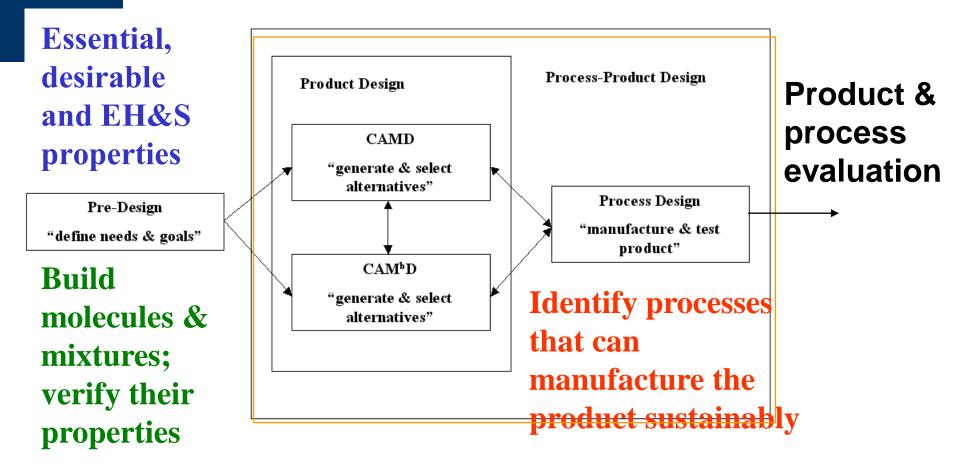
Chemical product centric sustainable process design: Computer aided product (molecules, polymers & mixtures) design

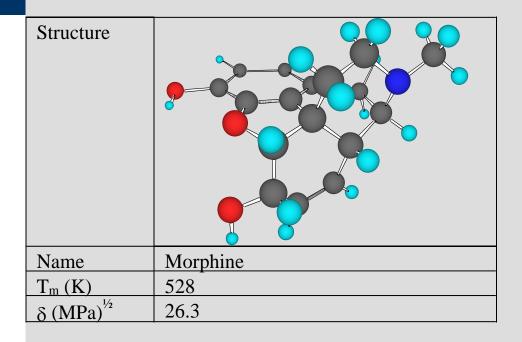
Rafiqul Gani PSE for SPEED Skyttemosen 6, DK-3450 Allerod, Denmark rgani2018@gmail.com

*PSEforSPEED.com


Sustainable Product-process Engineering, Evaluation & Design

SPEED Chemical product classification

						<u> </u>
Product	Single	e species	Multipl	le species		
Туре					Devices	
Issues						
Examples	Solvents , refrigeran ts	APIS, surfactan ts, membran es	B leudetional fuels, solvents, lubricants	Detergents, personal care, healthcare, medicinal	Fuel-cells, microcapsule s, hemodialysis device	
Key factors in design	Cost of	production	Cost and product functions		functions	
	N.A Time to market (speed)					
Basis of design	Process flowsheet (unit operations)	Synthesis routes (chemistry)	Blend properties	s Microstructu	Device form and constituent materials	
Measure of performance	Closely related to process	Closely related to application	Closely related to application	Consumer satisfaction	Consumer satisfaction	
Challenges in design	Translation of needs to molecular structure	Translation of needs to properties	Delivering product functions defined by needs		Translation of needs to produ material properties and configuration	uct
Large number of product Trial & error approach (non-optimal product alternatives						
Risks	Feedstock availability scienceAbsence of engineering knowledgeEnvironmental impact and sustainability				ledge	


Chemical product centric sustainable process design - Lecture 2

SPEED Chemical product design framework

1. Define needs; 2. Design products; 3. Design processes; 4. Evaluate process-product

SPEED An example of product design

Can we "design" drugs/pesticides/chemical products with desirable properties?

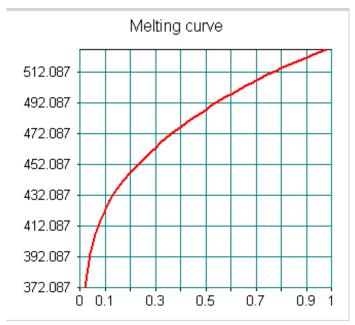
Can we "design" additives that must be added to obtain the final (formulated) product?

Figure 1: Molecular structure and properties of morphine

Define the product/additive needs and then identify the molecules/mixtures that match these needs!

SPEED Steps 1&3. Define needs - Product analysis

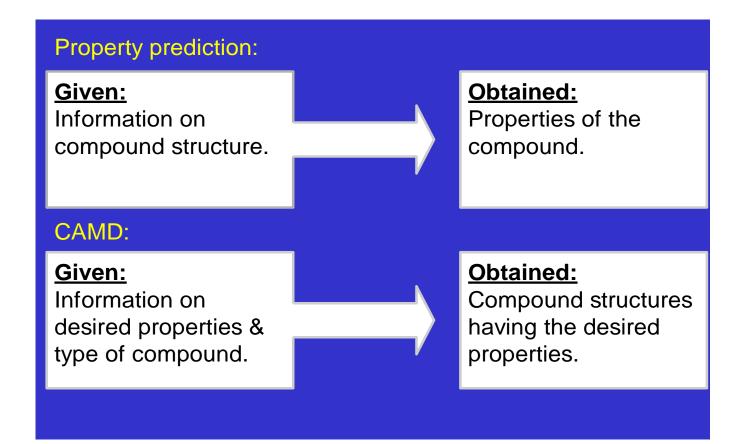
Compound Name : Morphine Compound CAS : 000057-27-2 Compound Smiles : Oc1ccc2CC3N(C)CCC45C3C=CC(0)C4Oc1c25 Compound Formula : C17H19NO3 Mw (g/mol) : 285.34

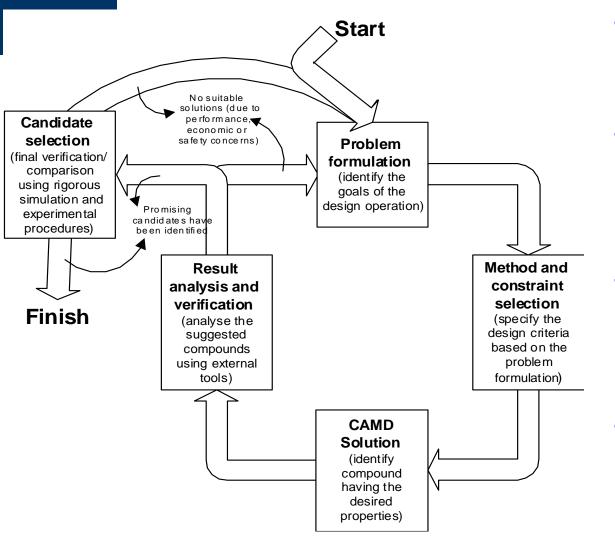

Best estimates are suggested for each property according developers' criteria. See detailed estimates through each in the corresponding pages

WARNING:

Accuracy of some estimated properties (e.g. Hansen parame might be poor if the melting point is far above 298 K

Property	Method	Unit	Est.Value	Exp.V
Tm	MG	K	493.59	528.1
ТЪ	MG	K	697.94	N/A
Тс	MG	K	926.95	N/A
Po	MG	bar	29.96	N⁄A
Ve	MG	cm³∕mol	848.93	N/A
Ze	MG		0.330	N⁄A
Gf[298K]	MG	kJ∕mol	65.33	N⁄A
Hf[298K]	MG	kJ/mol	-319.10	N/A
omega	CG		0.917	NZA
Hv[298K]	*****	kJ∕mol	N⁄A	N⁄A
Hv[Tb]	MG	kJ/mol	98.06	N/A
Hfus	MG	kJ∕mol	37.97	NZA
Sfus	MG	J∕(mol * K)	71.90	N⁄A
Vm[298K]	*****	cm³∕mol	N⁄A	NZA
Vm[Tb]	MG	cm³∕mol	334.43	NZA
Sol. Par.[298K]	MG	MPa½	35.32	N⁄A
Refractive Index	MG		2.39	N/A
Molar Refraction	*****		NZA	NZA
Surf.Tens.[298K]	*****	dyn/cm	N⁄A	N⁄A
G.T. Temp.	*****	K	NZA	NZA
Log(Kow)	MG		3.35	NZA
Log(Vs)	MG	Log(mg/L)	1.99	2.30
Closed Flash Temp.	CG	K	537.20	NZA
Open Flash Temp.	CG	K	650.99	N⁄A
Hansen Disp. sol.	CG	MPa½	17.67	NZA
Hansen Polar sol.	ĊĠ	MPa½	6.06	NZA
Hansen Hydr. sol.	ĊĞ	MPa½	15.49	N/A


Analyze solubility to estimate partition coefficients (logP): Ethanol, 1-butanol, acetonitrile, water, amines, chlorides, hexane, benzene


Partition coefficients are correlated to Product Activity during application

SPEED Step 2: CAMD for product design

CAMD can be described as "Reverse Property Prediction"

SPEED CAMD Framework

- Solutions of CAMD problems are iterative.
- Problem formulation controls the success.
- Essential qualities vs. (un)desirable qualities.
- Connectivity with external tools, data and methods.

SPEED CAMD General Problem Solution

A 3-stage Iterative Solution Approach

1. Set Goals (Pre-Design Stage) – Define Needs

- Essential properties
- Desirable properties
- Safety, Environmental, etc.
- 2. Design/Selection (Design Stage) Generate Alternatives
 - Search through database
 - Iteratively build molecules/mixtures, comparing to goals
 - Generate set of feasible molecules/mixtures
 - Simultaneously build and evaluate molecules/mixtures
 - Identify optimal molecule/mixture
 - Identify feasible set
- 3. Analyze, verify and select (Post-Design Stage) Final Selection (process/operation constraints)

SPEED CAMD problem solution: Database search

View Compound

Plot Results

Found Compounds:

casno	Chemname	mw	SolPar
000075-07-0	ACETALDEHYDE	44.053	19.9094
000074-87-3	METHYL-CHLORIDE	50.487	19.7197
000067-64-1	ACETONE	58.08	19.7297
000107-31-3	METHYL-FORMATE	60.053	20.4951
000110-02-1	THIOPHENE	84.142	20.1206
000075-09-2	DICHLOROMETHANE	84.932	20.3726
000107-92-6	n-BUTYRIC-ACID	88.106	20.2368
000100-66-3	ANISOLE	108.14	20.1055
000095-50-1	o-DICHLOROBENZENE	147.003	20.3107
000541-73-1	Benzene,1,3-dichloro-	147.003	19.5744

Problem: Find solvents that have

19.5 > Sol Par < 20.5

Solution: Use a search engine within a database to identify the set of feasible molecules

Record 10

▶ ▶ ◀

SPEED What do we need to solve CAMD problems?

Necessary Methods & Tools Method to generate candidates **Molecules and/or mixtures** Method to evaluate candidates **Predictive property models**. **Process/operation model** Method to select the best candidates **Criteria for selection**

Descriptors represent molecules & contribute to properties

SPEED Represent molecules with groups

Groups are the molecular descriptors

СНЗ-, -СН2-, -ОН, СНЗСО-, СНЗО-, -СН2СО-, -СН2О-

How many compounds can be formed by joining these groups?

Examples:

CH3-CH2-CH2-CH2-CH2-CH3

СНЗ-СН2-ОН ; СНЗ-СОСНЗ

СНЗ-СОСН2-СНЗ ; СНЗ-СН2-СН2-ОН

SPEED Group classification & combination rules

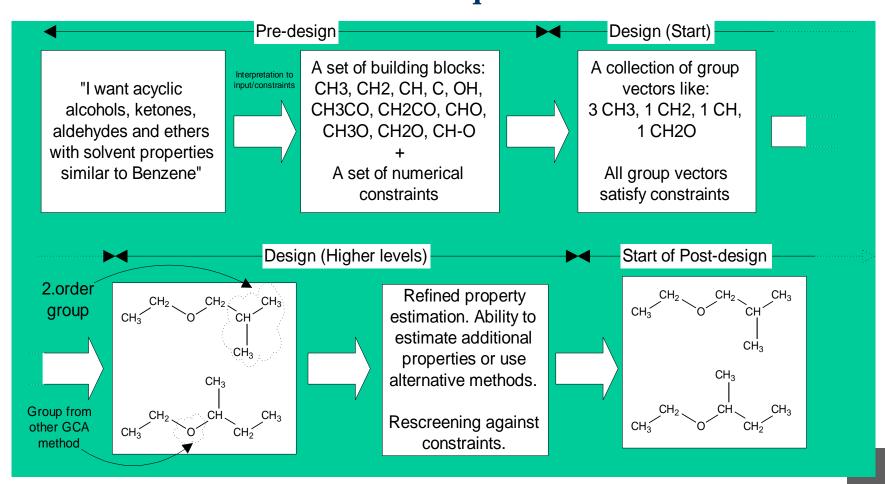
Class	Category								
	1	1 2 3 4 5							
1	CH3	CH2NO2	СНЗСО	ОН	CH2=CH				
2	CH2								
3	CH								

Class Number: Defines the number of free attachments -CH3; -CH2-; -CH-; -C-

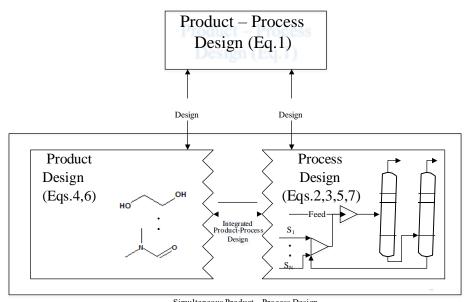
Category Number: Defines degree of restriction to joining with other groups. Examples -

1: no restrictions; 2-4: cannot join with each other; 5: only one per molecule of specified size

SPEED Group classification & combination rules


Class	Category							
	1	1 2 3 4 5						
1	CH3	CH2NO2	СНЗСО	OH	CH2=CH			
2	CH2							
3	CH							

Examples of rules to join groups to form feasible molecules


- A complete structure cannot have free attachments
- Groups from category 2-4 cannot join with each other
- Groups from category 5 can appear only once

SPEED CAMD group based method: Overview

Multi-level generate & test according to a predefined sequence

SPEED CAMD: Application examples

Simultaneous Product - Process Design

Molecular design (single molecular products) •Solvents •Process fluids •Surfactants •Active ingredients •Polymer repeat units

.

Eqs. 4, 6 with or without Eq. 1 (product design and implicit performance verification)

SPEED Example - 1: CAMD problem formulation

Given: A set of descriptors (groups) and target values for a set of properties.

Find all feasible chemical molecules that satisfy the target properties

Given, descriptors CH3-; -CH2-; -OH Target properties: 345 > T_b > 355

Solution: Join descriptors to form molecules, for example, CH3-CH2-OH (one likely candidate?) Estimate property: $exp(T_b/T_{b0}) = A_{CH3} + A_{CH2} + A_{OH}$ $T_b = 351.44$ K

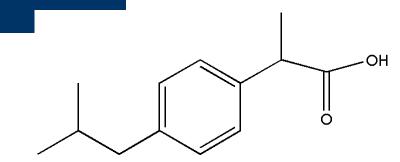
Example - 2: CAMD problem formulation SPEED Given, descriptors CH3-; -CH2-; -OH Target properties: $345 > T_h > 355$ **Dissolves Vanillin (000121-33-5) Solution: Join descriptors to form molecules, for** example, CH3-CH2-OH (one likely candidate?) Estimate T_h (351.44 K) & Solubility (mutually miscible) **Solubility** $\approx 1/(\gamma_i^{\infty})$; γ_i^{∞} is infinite dilution activity coefficient of Vanillin (solute) in Ethanol (solvent) $\gamma_i^{\infty} = f(T, \underline{x}, \text{group contributions \& interactions}) = UNIFAC$

SPEEDExample - 3: CAMD problem formulationExample: Given, descriptors CH3-; -CH2-; -OHTarget properties: $345 > T_b > 355$ Dissolves Vanillin (000121-33-5) & select the best
temperature of operation

Solution: Join descriptors to form molecules, for example, CH3-CH2-OH (one likely candidate?)

Estimate T_b (351.44 K) & Solubility (mutually miscible) Solubility $\approx 1/(\gamma_i^{\infty})$

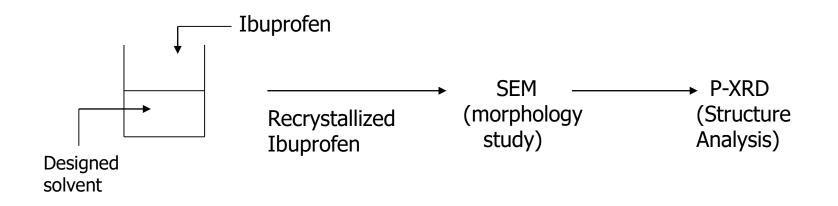
 $\gamma_i^{\infty} = f(T, \underline{x}, \text{group contributions & interactions}) = UNIFAC$ Compute a phase diagram (T versus x); select T; verify operation through a process model (process simulation)

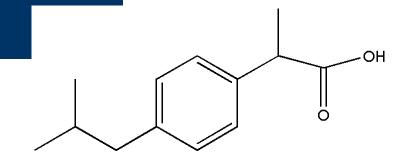

SPEED Example - 4: CAMD problem formulation

Example: Given, descriptors CH3-; -CH2-; -OH Target properties: $345 > T_b > 355$ Dissolves Vanillin (000121-33-5) & select the best temperature of operation

$\underline{f}_{k3}(\underline{x},\underline{h}_1,\underline{h}_2,\underline{z})=0$

<u>y</u>: vector of group identifiers; $\underline{\theta}$: vector of group contributions; <u>x</u>: vector of compositions; $\underline{\phi}$: vector of property model parameters; <u>z</u>: vector of process parameters; <u>g</u>: constraints for feasible molecules; <u>h</u>₁ & <u>h</u>₂: constraints for properties; <u>f</u>: process constraints (mass and/or energy balance)

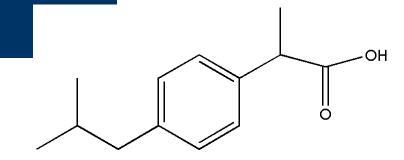

mixture properties)



Chemical product: Ibuprofen

Consider cooling as well as drowning-out crystallization

Find solvents, anti-solvents & their mixture that makes the following process feasible:

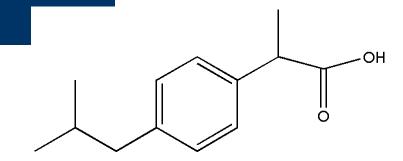


Chemical product: Ibuprofen Consider cooling as well as drowning-out crystallization

Find solvents, anti-solvents & their mixture that satisfy the following:

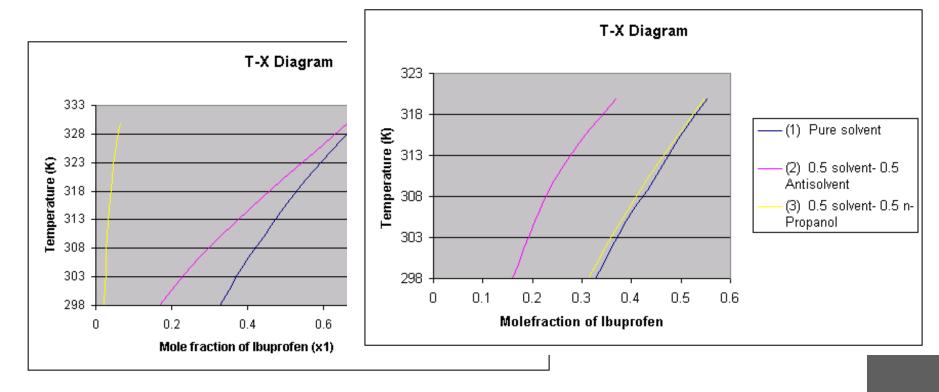
- **Potential recovery > 80%**
- Solubility parameter > 18 MPA^{1/2} (or > 30)
- Hydrogen bonding solubility parameter > 9 MPA^{1/2} (or > 24)
- Tm < 270 K; Tb > 400 K; -log (LC50) < 3.5

Solution strategy: Define CAMD problem to generate solvent candidates; verify performance through solubility calculations; check database to verify predictions



Chemical product: Ibuprofen Consider cooling as well as

drowning-out crystallization


Component	Structure	Compositions
Solvent	0 0 0	0.21
Anti-solvent	он но он	0.79

A computer aided-molecular design framework for crystallization solvent design. *Karunanithi, A.T; Achenie, L.E.K; Gani, R. Chemical Engineering Science, 2006, 61, 1243-1256.*

Chemical product: Ibuprofen

Consider cooling as well as drowning-out crystallization

SPEED Polymer Design: MINLP applied to CAMD

Polymer design problem where polymer repeat units with 2-4 different groups and 2-9 total number of groups in the repeat unit structure are being sought

```
Fobj = \Sigma [(P_i - P_i^*)/P_i^*]^2
```

s.t.

 $T_g \cong 373 \text{ K}$

Density $\cong 1.5 \text{ g/cm}^3$

Water absorption = 0.005 g H₂O/g polymer)

-CH2- ; -CO- ; -CO- ; -O- ; -CONH- ; -CHOH-; -CHCL-

SPEED Polymer Design: MINLP applied to CAMD

Fobj = $\Sigma [(P_i - P_i^*)/P_i^*]^2$ select property models s.t. $\mathbf{T}_{g} = [\Sigma (\mathbf{Y}_{k} \mathbf{n}_{k})]^{T} [\Sigma (\mathbf{M}_{k} \mathbf{n}_{k})] \cong (373 \pm 20) \mathrm{K}$ Density = $[\Sigma (\mathbf{M}_k \mathbf{n}_k)] / [\Sigma (\mathbf{V}_k \mathbf{n}_k)] \approx (1.5 \pm 0.1) \text{ g/cm}^3$ Water absorption = $[\Sigma (H_k n_k)] / [\Sigma (M_k n_k)]$ \cong (0.005± 0.0005) g H₂O/g polymer) -CH2-;-CO-;-COO-;-O-;-CONH-;-CHOH-;-CHCL-

Note: objective function and constraints are non linear; n_k , the optimization variables are integer (0-9)

SPEED Polymer Design: MINLP applied to CAMD

Fobj = $\Sigma [(P_i - P_i^*)/P_i^*]^2$

s.t.

353 K < T_g = $[\Sigma (Y_k n_k)] / [\Sigma (M_k n_k)] < 393$ K

 $1.4 < \rho = [\Sigma (M_k n_k)] / [\Sigma (V_k n_k)] < 1.5 \text{ g/cm}^3$

 $0.0045 < W = [\Sigma (H_k n_k)] / [\Sigma (M_k n_k)] < 0.0055) g H_2O/g polymer)$

- $2 \le \Sigma y_j \le 3$; $y_j : 0 \text{ or } 1 \text{ for } j=1,7$
- $2 \le \Sigma y_k n_k \le 9$ add structural constraints

-CH2- ; -CO- ; -CO- ; -O- ; -CONH- ; -CHOH-; -CHCL-

Note: objective function and constraints are non linear; n_k , the optimization variables are integer (0-9)

SPEED Polymer Design: Reformulate - I

Fobj = $\Sigma [(P_i - P_i^*)/P_i^*]^2$

s.t.

353 K < T_g = $[\Sigma (Y_k n_k)] / [\Sigma (M_k n_k)] < 393$ K

 $1.4 < \rho = [\Sigma (M_k n_k)] / [\Sigma (V_k n_k)] < 1.5 \text{ g/cm}^3$

 $0.0045 < W = [\Sigma (H_k n_k)] / [\Sigma (M_k n_k)] < 0.0055) g H_2O/g polymer)$

- $50 < \Sigma (M_k n_k) < 100$ add a new constraint
- $2 \le \Sigma y_j \le 3$; $y_j : 0 \text{ or } 1 \text{ for } j=1,7$

 $2 \leq \Sigma y_k n_k \leq 9$

-CH2-;-CO-;-COO-;-O-;-CONH-;-CHOH-;-CHCL-

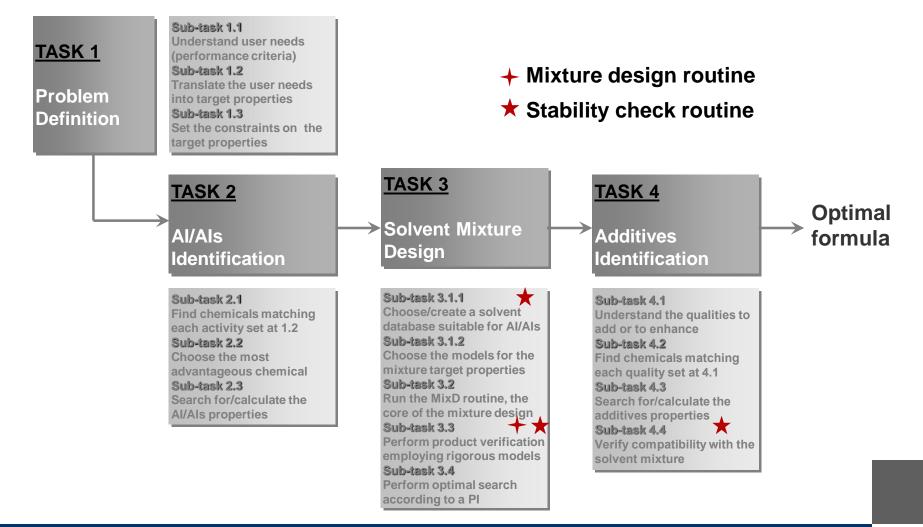
SPEED Polymer Design: Reformulate – II (MILP) $\mathbf{Min Fobj} = \mathbf{M}$ reformulate Fobj & constraints s.t. $18.7 < T_{o}M = [\Sigma (Y_k n_k)] < 37.3 \text{ K g/mol}$ $50/1.4 < M/\rho = [\Sigma (V_k n_k)] < 100/1.5 g/cm^3$ $0.0045*50 < W M = [\Sigma (H_k n_k)] < 0.0055*100 g H_2O/g polymer)$; y_i : 0 or 1 for j=1,7 $LB_1 \leq \Sigma y_i \leq UB_1$ $LB_2 \leq \Sigma y_k n_k \leq UB_2$ -CH2-;-CO-;-COO-;-O-;-CONH-;-CHOH-;-CHCL-14 ; 28 ; 44 ; 16 ; 43 ; 30 ; 48.5

SPEED Polymer Design: Problem solution

Generate & test (all these polymers satisfy the structural constraints but not necessarily the property constraints) [-CH2 – COO-]; M = 58[-CH2 – CH2 – CH2 – CH2-]; M = 56

```
[-CH2 – CHCL- CH2-]; M = 76.5
```

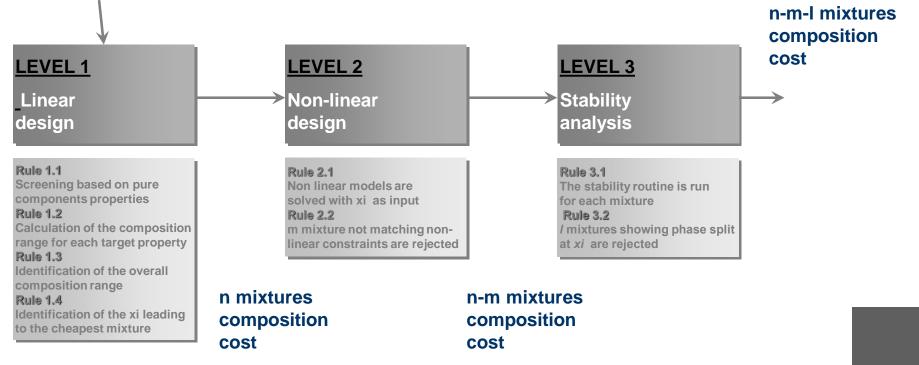
```
[-CH2 – CHOH –CH2-]; M = 58
```


SPEED Formulation Design: Mixtures, blends, ... **Computer Aided Mixture**^{blend} **Design** Liquid formulated **Product – Process Design** (Eq.1) products Product Process Design Design **Tailor-made Product** Process Design Design blends (Eqs.4,6)(Eqs. 2, 3, 5, 7)-Feed-Integrated Product-Prodesign

Simultaneous Product – Process Design Emulsified products

Eqs. 1, 4 & 6: mixture-blend design

Chemical product centric sustainable process design - Lecture 2


Algorithm: Work-flow

Algorithm: Mixture design

INPUTS:

- **1.** Database of solvents properties (sub-task 3.1.1)
- 2. Mixture property models (sub-task 3.1.2)
- 3. Number of target properties
- 4. Temperature (K)
- 5. Information for non-linear models

Four case studies have been developed:

- Design of a white paint for house interiors
- Design of an alcohol based insect repellent (spray lotion)
- Design of an water based insect repellent (spray lotion)
- Design of a water resistant sunscreen (spray lotion)

Performance criteria:

what do consumers want?

- * protection from sunburns
- protection from skin cancer
- * prevention of skin aging
- easy and fast applicability
- high durability
- * good stability
- water resistance
- * low toxicity
- good material compatibility
- * pleasant skin feel
- low price
- * pleasant color
- * pleasant scent

main activities \rightarrow Active Ingredients

qualities to enhance \rightarrow Additives

Performance criteria: what do consumers want?

- easy and fast applicability
- * high durability
- * good stability
- * water resistance
- * low toxicity
- * good material compatibility
- * pleasant skin feel
- * low price

Target properties:

which are the related chemical properties?

- * form: viscosity v, density ρ , solubility δ
- * solvents evaporation rate T_{90}
- * phase equilibrium: 1 phase system
- * solvents: oil soluble chemicals
- * lethal concentration LC_{50}
- suitable database of solvents
- * solvents with good cosmetic properties
- $* \cos C$

Target properties:

* viscosity v

- * density ρ (\tilde{V})
- $\mathbf{*}$ solubility $\boldsymbol{\delta}$
- * lethal concentration LC_{50}
- * evaporation time T_{90}

Constraints:

0.0	<	V	<	75.0	cS
100.0	<	\tilde{V}	<	150.0	l/kmol
$0.85 \cdot \delta_{AI}$	<	δ	<	1.15· δ_{AI}	MPa½
3.16	<	LC_{50}	<	+∞	mol/m ³
700	<	T_{90}	<	1300	S

* one phase system

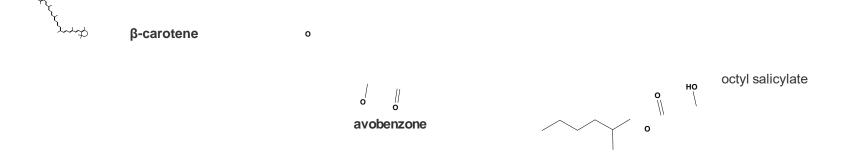
solvent type

* cost

Considered later in the design

Main product activities:

- * protection from sunburns
- * protection from skin cancer * UV-B blocker
- * prevention of skin aging


Als needed:

- & UV-A blocker
- antioxidant
- * inorganic pigment

Als chosen:

- avobenzone
- octyl salicylate
- « α-carotene, β-carotene, vitamin A

* TiO₂

Als properties:

Kind of Al	AI	δ [MPa ^½]	solubility
UV	avobenzone	23.44	oil-soluble
filters	octyl salicylate	21.50	oil-soluble
	α-carotene	17.71	oil-soluble
	β-carotene	17.92	oil-soluble
antioxidants	vitamin A	20.69	oil-soluble
inorganic pigments	TiO ₂	34.4	insoluble

 $\delta_{AI} = 20.3$

Therefore, the constraint on the solubility parameter becomes:

$$\begin{array}{rcl} 0.85 \cdot \delta_{AI} &< & \delta &< & 1.15 \cdot \delta_{AI} & \text{MPa}\frac{1}{2} \\ & & \checkmark & & \\ 17.3 &< & \delta &< & 23.3 & \text{MPa}\frac{1}{2} \end{array}$$

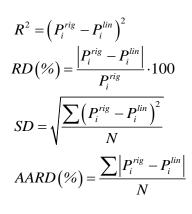
The solvent database has to contain:

- oil soluble chemicals
- with good cosmetic properties
- with good material compatibility
- * giving one phase system

The properties to control are:

- * kinematic viscosity v
- * density $\rho(\tilde{V})$
- * solubility parameter δ
- * lethal concentration LC_{50}
- * evaporation time T_{90}

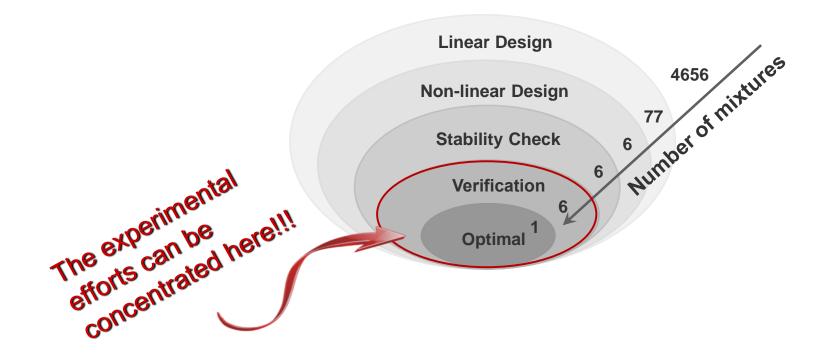
All the models are linear except for T_{90} for which a rigorous model is chosen


Database: 97 esters

One phase systems matching the targets (results from MiXD routine):

n٥	Compounds	<i>x</i> ₁	δ	v	<i>LC</i> ₅₀	T ₉₀	Cost
			MPa ^½	cS	mol/m ³	S	\$/kg
1	MAcAI + 2,2-dimethylpropyl butanoate	0.89	18.95	0.53	3.63	1017.8	1.40
2	MAcAI + tert-butyl pentanoate	0.89	18.95	0.53	3.63	1017.8	1.40
3	MAcAI + isobutyl isopentanoate	0.89	18.93	0.48	3.65	878.7	1.40
4	MAcAI + 1,1-dimethylpropyl 3-methylbutanoate	0.91	18.91	0.52	3.86	846.7	1.41
5	MAcAI + 2,2-dimethylpropyl 3-methylbutanoate	0.91	18.92	0.53	3.80	940.2	1.41
6	MAcAI + isobutylene 3,3-dimethylbutanoate	0.91	18.92	0.53	3.80	940.2	1.41

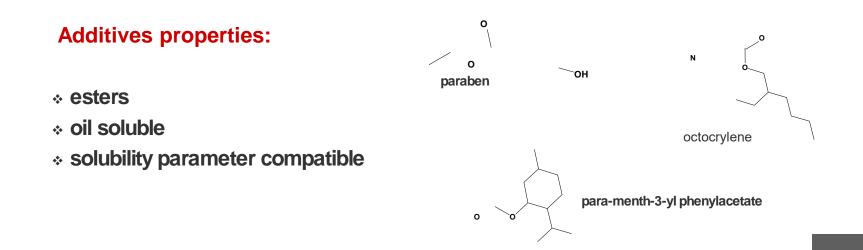
Property verification:


nº	H-B	<i>x</i> ₁	v-linear	v -Cao (1992)	R ²	RD (%)
			cS	cS		
1	PNA-PNA	0.89	0.533	0.537	0.00	0.75
2	PNA-PNA	0.89	0.533	0.537	0.00	0.75
3	PNA-PNA	0.89	0.480	0.482	0.00	0.37
4	PNA-PNA	0.91	0.517	0.495	0.00	4.52
5	PNA-PNA	0.91	0.529	0.533	0.00	0.73
6	PNA-PNA	0.91	0.529	0.533	0.00	0.73
RS	ME/AAD (%)				0.01	1.31

Optimal search:

- * The PI chosen is toxicity (LC_{50})
- The optimal mixture is mixture nº 4

Summary of all the actions performed during the mixture design task:


Qualities to enhance:

Feasible Additives:

- augmentation of UV protection
- * enhancement of stability
- * prevention of microbial growth
- * pleasant scent

* octocrylene

- * octocrylene
- * parabens
- * para-menth-3-yl phenylacetate

Final result - optimal formulation:

Family	Chemical	X _i	W _i
	avobenzone	0.010	0.0325
	octyl salicycate	0.013	0.0325
Als	α-Carotene	0.003	0.0163
	β-Carotene	0.003	0.0161
	vitamin A	0.011	0.0325
	TiO ₂	0.025	0.0325
Solvent	methoxyacetaldehyde	0.789	0.593
mixture	2,2-dimethylpropylbutanoate	0.098	0.157
	octorylene	0.009	0.034
Additives	parabens	0.021	0.033
	iso-propyl salicylate	0.018	0.033

SPEED Tailor-made fuel blends - 1

The main challenge involves how to identify the blends that satisfy the blend target properties with various types of additives **Problems solved**: Tailor made design of gasoline blends, diesel blends, jet-fuel blends and lubricant blends.

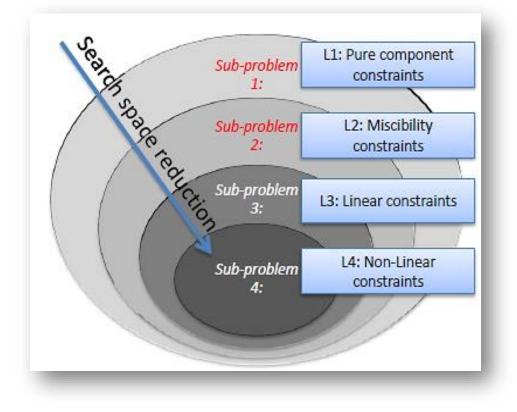
Example: Blending gasoline with different additives:
 ✓ impact of fuel consumption on the environment.
 ✓ performances can be retained and improved.

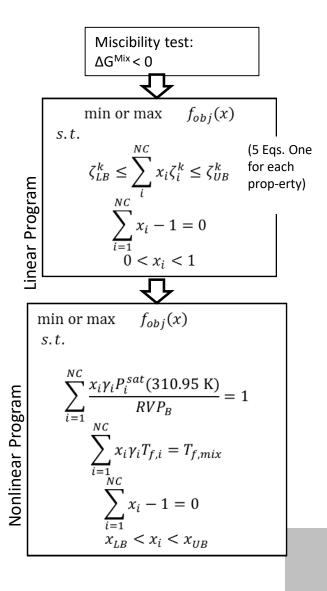
Blend templates help to efficiently narrow down the search space of feasible chemicals to be added and obtain improved tailor-made blends in a faster, reliable and robut manner

* Collaboration with Texas A&M in Qatar.

SPEED Tailor-made fuels - 2

Task 1 Problem Defintion


- 1.1 Identify product needs
- 1.2 Translate needs into physico-chemical properties
- 1.3 Set target values


				Data	abase	
Need	Target property	Target value			_	
Ability to be burned	RVP	$45 \le RVP \le 60$	<i>k</i>			
Engine efficiency	RON	$RON \ge 92$	Model	Oil	Addi	tives
	HHV	$HHV \ge 40$	(fixe	d)	(22 se	lected)
Consistency of fuel flow	η	$0.30 \le \eta \le 0.60$				
	ρ	$0.720 \leq ho \leq 0.775$				
Flammability	T_f	$T_f \leq 300$				
Toxicity	<i>LC</i> 50	$-logLC_{50} < 3.08$				
Stability	ΔG^{mix}	$\Delta G^{mix} < 0$	tail	or mag	de blenc	,
Environmental aspect	Wt ₀₂	$2 \leq W t_{02} \leq 20$	Laii	01-mat		
Low oxidation	Choice of chemicals					

SPEED Tailor-made fuels

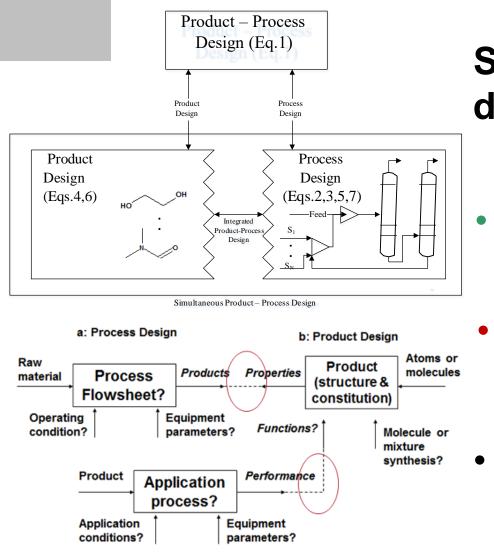
Task 2 Mixture/blend design

- 2.1 Pure component constraints (HHV, ρ, η, LC50, WtO2)
- 2.2 Miscibility constraint (ΔG^{mix})
- 2.3 Linear constraints (HHV, ρ, η, LC50, WtO2)
- 2.4 Non-linear constraints (RVP, Tf)

Chemical product centric sustainable process design - Lecture 2

SPEED Tailor-made fuels

Task 3 Rank blend candidates according to a selection criterion


Blend	Composition (vol%)
Blend 1	MI (69), Tetrahydrofuran (11), 2-Methyl Tetrahydrofuran (20)
Blend 2	MI (67), Acetone (13), 2-Methyl Tetrahydrofuran (20)
Blend 3	MI (72), Acetone (10), 2-Butanone (18)
Blend 4	MI (75), 2-Butanone (13), 2-Methyl Tetrahydrofuran (12)
Blend 5	MI (77), Ethanol (12), 2-Methyl Tetrahydrofuran (11)

Task 4 Experimental verification

Sample	Density at 15°	C (g/[[cm]]^3)	Dynamic Visco	osity(mPa.s)	Vapor Pressure	at 37.8°C (kPa)
Target Values	0.720-0.775		0.3-0.6		45 - 60	
	Experimental	Model	Experimental	Model	Experimental	Model
Main Ingredient	0.71	0.73	0.50	0.51	51.0	54.0
Blend 1	0.76	0.76	0.54	0.46	46.2	50.8
Blend 2	0.75	0.74	0.46	0.43	60.4	64.5
Blend 3	0.73	0.74	0.45	0.43	58.9	63.7
Blend 4	0.74	0.73	0.46	0.45	50.1	53.5
Blend 5	0.74	0.74	0.61	0.58	55.1	58.9

What next?

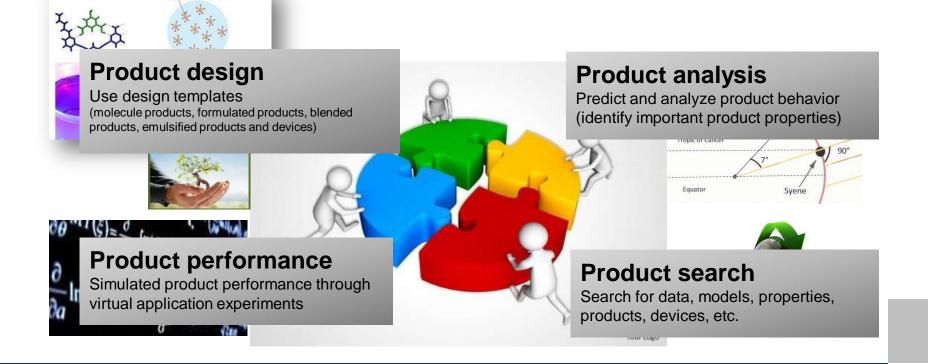
SPEED

Some interesting developments:

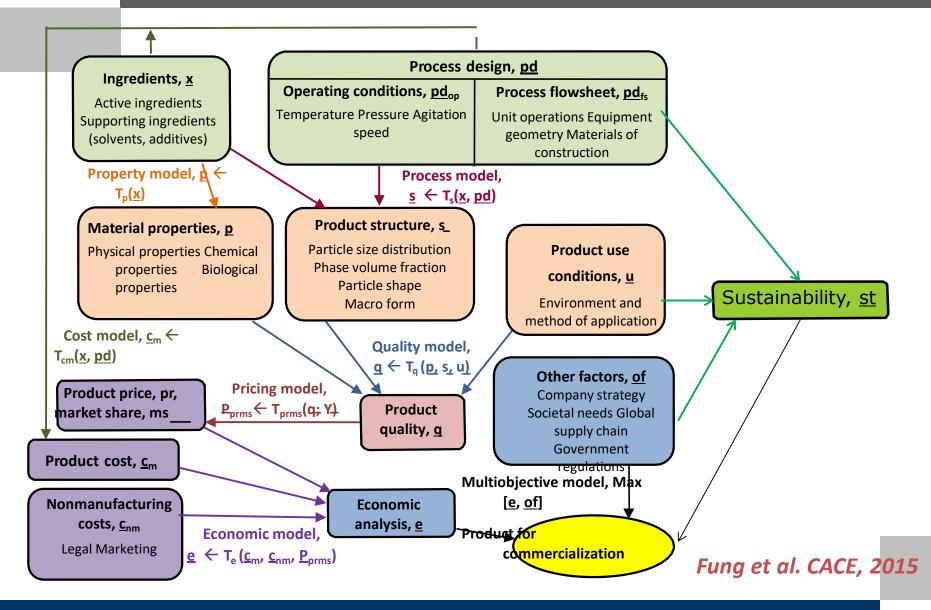
 The chemical product simulator

 Product-process development

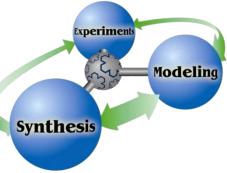
_ _ _ _


c: Product Application

SPEED


Chemical product design simulator

There is a need for a product simulator with the same and more useful features than a typical process simulator. Based on available data, models, methods and analysis tools, the first chemical product simulator has been developed: **ProCAPD**


SPEED The grand chemical product design model

SPEED Collaborative effort needed!

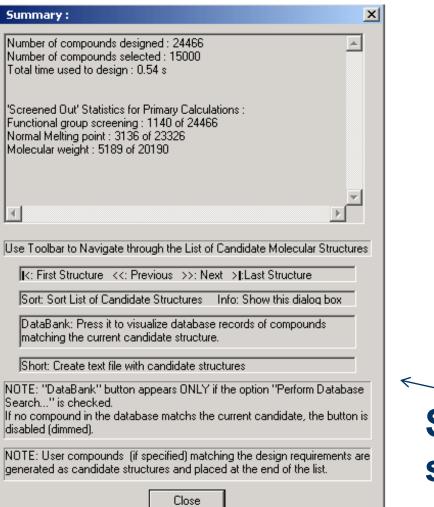
	System	Experiments	Optimized design?
	under study	Guidance and	
REALITY	Provide	insights for 	Verify
VIRTUAI	parameters		theoretica bolutions
REALITY	Model system	Simulations	Optimized design?
		,	

- Solution approaches
 - Integrated multiscale modeling, experiments and synthesis
 - Ability to find predictiveinnovative solutions

Design Problem from 60 Years Ago

- Non-scumming "soap bar" (world's bestselling soap bar) – Launched by Lever Bros (US division of Unilever) in 1955
- Attributes comparable to ordinary soap bars
 - Firmness
 - Lather
 - Rate of wear
 - Slipperiness
 - Mildness
 - No unpleasant odors
 - No "cracking" from wet/dry cycles

Michael Hill M Hill & Associates Mahwah, NJ


 Processable on ordinary soap bar line: model-based system yet to be developed

<u> </u>
Azeotrope/Miscibility Calculations Biodegradation Calculations
Temperature depd. props. Mixture Properties
General Problem Control Non temperature depd. props.
Problem Title:
Title large molecules
Generate:
C Acyclic Compounds 🔲 Generate Isomers
- Autoslack in initial constation:
Aromatic Compounds Autostack in Initial generation. ± 10%
O Cyclic Compounds
Preselection Generate Alcohols Generate Esters
Generate Ketones Generate Ethers
Generate Aldehvdes
Generate Acids
E Generate Compounds containing silicon
Generate Compounds containing double bonds
Generate Compounds containing triple bonds
Generate Compounds containing flourine
Generate Compounds containing chlorine
Generate Compounds containing bromine
Generate Compounds containing iodine
🔲 Generate Compounds containing sulphur
Selected Groups:
CH2=C CH=C C=C ACH AC ACCH3
ACCH2 ACCH OH CH2=C=CH
Edit Groups

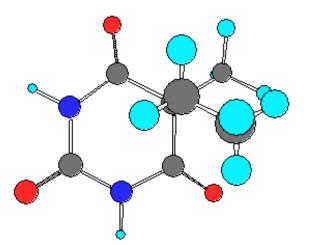
User specified compounds:	
	Delete
	Define
	Commom Solv.
Extended Problem Control	
Minimum number of groups:	2
Maximum number of groups:	30 🛨
Minimum number of "functional" groups:	1 ÷
Maximum number of "functional" groups:	4 💼
Minimum number of same "functional" group:	1 ÷
Maximum number of same "functional" group:	4
Perform Database search after generation	

General problem control

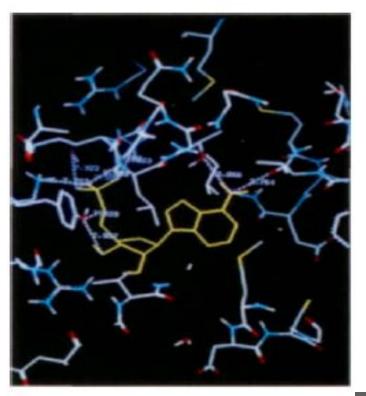
Fill out also the non-temperature depd props (Mw > 400 ; Tb > 500; Tm > 350)

Solution statistics

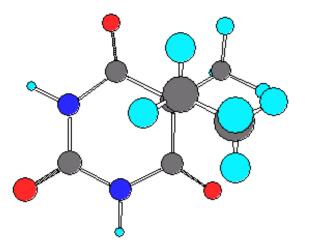
Summary : 🔀	Compound 1 :		
Number of compounds designed : 24466 Number of compounds selected : 15000 Total time used to design : 0.54 s 'Screened Out' Statistics for Primary Calculations : Functional group screening : 1140 of 24466	Description : No Groupname 8 CH2		
Normal Melting point : 3136 of 23326 Molecular weight : 5189 of 20190	3 CH 5 ACCH3 1 ACCH2 3 OH 1 CH2=C=CH		
Use Toolbar to Navigate through the List of Candidate Molecular Structures			
K: First Structure → Previous → Next → Last Structure	Properties :		
Sort: Sort List of Candidate Structures Info: Show this dialog box	Property		Unit
DataBank: Press it to visualize database records of compounds matching the current candidate structure.	Normal Melting point Normal Boiling point Molecular weight	356.05 719.09 402.60	К
Short: Create text file with candidate structures	molecular weight	402.00	grinor
NOTE: "DataBank" button appears ONLY if the option "Perform Database Search" is checked. If no compound in the database matchs the current candidate, the button is disabled (dimmed).			
NOTE: User compounds (if specified) matching the design requirements are generated as candidate structures and placed at the end of the list.	Details of generated comp	oun	d
Close			
Solution statistics			

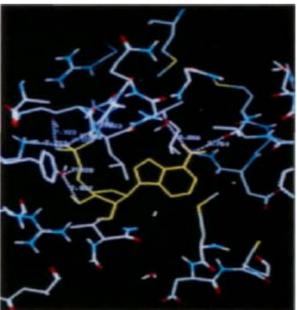

Chemical product centric sustainable process design - Lecture 2

🗅 🚅 🔚 陆 💼	K+*C 🕅 🎦 🕞	Barca	' NunC 🌤 💹 🖞	NEW CHEN GRP 30	Prim Sec Func -CH3 Mutt D.Fit 💡
Summary Marrero	and Gani Con	stantinou an	d Gani Jobac	k and 🔺 🕨	
Property Values included in ProP	estimated by red	using metl	hods	_	
Compound Name	: unknown				
Compound CAS Compound Smiles	: unknown · OCCCCCCCC	ເວັດເວັດ	C=C=C)Cc1c(C		
Compound Formula	: C26H42O3	(0)0(0)00(0 0 0,0010(0	,0(0,0(но
Mw (g∕mol)	: 402.61				II ï { { } }
Best estimates a developers' crit	re suggested	for each p	property acc	ording	
in the correspon	ding pages	tarreu est:	imates throu	yn each	
					ОН
WARNING:					
Accuracy of some might be poor if	estimated p	roperties	(e.g. Hansen far above 29	parame 8 K	
		•			
Property		Unit	Est.Value	Exp.V	
Property	Method	Unit		Exp.V	
Property Tm Tb	Method MG MG	Unit K K	413.64 737.07	Exp.V N⁄A N⁄A	
Property Tm Tb Tc	Method MG MG MG	Unit K K K	413.64 737.07 929.51	Exp.V N⁄A N⁄A N⁄A	
Property Tm Tb	Method MG MG MG MG MG	Unit K K	413.64 737.07 929.51 13.04 1387.47	Exp.V N×A N×A N×A N×A N×A	
Property Tm Tb Tc Pc Vc Zc	Method MG MG MG MG MG MG MG	Unit K K K bar cm³/mol	413.64 737.07 929.51 13.04 1387.47 0.234	Exp.V N/A N/A N/A N/A N/A N/A	
Property Tm Tb Tc Pc Vc Zc Gf[298K]	Method MG MG MG MG MG MG MG	Unit K K K bar	413.64 737.07 929.51 13.04 1387.47	Exp.V N×A N×A N×A N×A N×A	
Property Tm Tb Tc Pc Vc Zc Gf[298K] Hf[298K] omega	Method MG MG MG MG MG MG MG MG CG	Unit K K bar cm ³ /mol kJ/mol kJ/mol	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 -611.19 1.988	Exp.V N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Property Tm Tb Tc Pc Vc Zc Gf[298K] Hf[298K] omega Hv[298K]	Method MG MG MG MG MG MG MG MG CG	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 −611.19 1.988 N×A	Exp. V N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Launch ProPred from
Property Tm Tb Tc Pc Vc Zc Gf[298K] Hf[298K] omega	Method MG MG MG MG MG MG CG ****** MG MG	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 -611.19 1.988	Exp.V N/A N/A N/A N/A N/A N/A N/A N/A N/A	Launch ProPred from
Property Tm Tb Tc Pc Vc Zc Gf[298K] Hf[298K] Hv[298K] Hv[Tb] Hfus Sfus Sfus	Method MG MG MG MG MG MG MG CG ****** MG MG MG	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol kJ/mol J/(mol*K)	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 −611.19 1.988 N×A 121.13 55.63 134.49	Exp. V N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Property Tm Tb Tc Pc Vc Gf[298K] Hf[298K] omega Hv[298K] Hv[298K] Hv[Tb] Hfus Sfus Vm[298K]	Method MG MG MG MG MG MG CG ****** MG MG MG MG	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol kJ/mol J/(mol*K) cm ³ /mol	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 −611.19 1.988 N×A 121.13 55.63 134.49 N×A	Exp. V N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Launch ProPred from ProCAMD for further
Property Tm Tb Tc Pc Vc Zc Mf[298K] Hf[298K] Hv[298K] Hv[7b] Hfus Sfus Vm[298K] Vm[7b] Sol. Par.[298K]	Method MG MG MG MG MG MG CG CG ****** MG MG MG MG MG MG MG MG	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol kJ/mol J/(mol*K)	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 −611.19 1.988 N×A 121.13 55.63 134.49 N×A 559.62 24.82	Exp.V N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ProCAMD for further
Property Tm Tb Tc Pc Vc Zc Gf[298K] Hf[298K] Hv[298K] Hv[298K] Hv[Tb] Hfus Sfus Vm[298K] Vm[298K] Vm[7b] Sol. Par.[298K] Refractive Inde	Method MG MG MG MG MG MG MG CG ****** MG MG MG ****** MG MG MG ******	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol cm ³ /mol cm ³ /mol	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 -611.19 1.988 N/A 121.13 55.63 134.49 N/A 559.62 24.82 1.85	Exp. V N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ProCAMD for further
Property Tm Tb Tc Pc Vc Zc Gf[298K] Hf[298K] omega Hv[298K] Hv[298K] Hv[Tb] Hfus Sfus Vm[298K] Vm[Tb] Sol. Par.[298K] Vm[Tb] Refractive Inde Molar Refractio	Method MG MG MG MG MG G G WG MG MG MG MG MG MG MG MG MG X MG MG X MG MG X MG MG	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol kJ/mol J/(mol*K) cm ³ /mol cm ³ /mol MPa%	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 -611.19 1.988 N/A 121.13 55.63 134.49 N/A 559.62 24.82 1.85 N/A	Exp.V N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	
Property Tm Tb Tc Pc Vc Zc Gf[298K] Hf[298K] Hv[298K] Hv[Tb] Hfus Sfus Vm[298K] Vm[298K] Vm[298K] Vm[298K] Vm[298K] Vm[298K] Vm[298K] Sol. Par.[298K] Refractive Inde Molar Refractio Surf.Tems.[298K]	Method MG MG MG MG MG MG CG CG ****** MG MG MG MG MG MG x MG MG x MG x	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol kJ/mol kJ/mol cm ³ /mol cm ³ /mol	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 -611.19 1.988 N/A 121.13 55.63 134.49 N/A 559.62 24.82 1.85 N/A N/A N/A	Exp. V N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ProCAMD for further
Property Tm Tb Tc Pc Vc Zc Gf[298K] Hf[298K] Hv[298K] Hv[Tb] Hfus Sfus Vm[298K] Vm[7b] Sol. Par.[298K] Vm[Tb] Sol. Par.[298K] Mcfractive Inde Molar Refractio Surf.Tens.[298K] G.T. Temp. Log(Kow)	Method MG MG MG MG MG MG MG CG ****** MG MG MG MG ****** MG MG ****** MG MG ****** MG MG ******	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol J/(mol*K) cm ³ /mol cm ³ /mol MPa% dyn/cm K	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 -611.19 1.988 N/A 121.13 55.63 134.49 N/A 559.62 24.82 1.85 N/A N/A N/A N/A N/A	Exp. V N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ProCAMD for further
Property Tm Tb Tc Pc Vc Zc Gf[298K] Hf[298K] Hv[298K] Hv[Tb] Hfus Sfus Vm[298K] Vm[298K] Vm[298K] Vm[298K] Vm[298K] Vm[298K] Vm[298K] Sol. Par.[298K] Refractive Inde Molar Refractio Surf.Tems.[298K]	Method MG MG MG MG MG MG MG MG MG MG	Unit K K bar cm ³ /mol kJ/mol kJ/mol kJ/mol kJ/mol J/(mol*K) cm ³ /mol cm ³ /mol MPa%	413.64 737.07 929.51 13.04 1387.47 0.234 7.27 -611.19 1.988 N/A 121.13 55.63 134.49 N/A 559.62 24.82 1.85 N/A N/A N/A	Exp. V N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ProCAMD for further

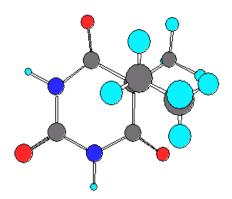

- Analyze the drug Ibuprofen (define the needs for improving process efficiency in extracting the product from solution in the reactor) – use ProPred
 - Search compound in database
 - start ICAS
 - click on M, select basic search, search with CASnumber (015687-27-1), copy SMILES
 - Start ProPred
 - import SMILES, analyze properties

- Use ProCamd to match the list of solvents and anti-solvents for Ibuprofen
 - Formulate problems (solvent & anti-solvent) see slide 19)
 - Start ProCamd
 - Specify problem (ProCamd manual)
 - Start execution
 - Analyze results

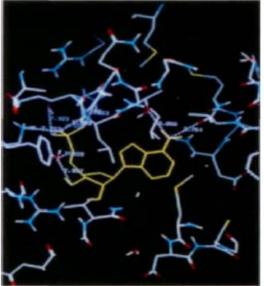

Problem Statement-1: From the derivatives of Barbituric acid, identify the candidate that is required in the smallest amount (C) to produce a 1:1 complex with protein (binding to bovine serum albumin)


Barbituric Acid (000077-02-1)

Problem Statement-1: From the derivatives of Barbituric acid, identify the candidate that is required in the smallest amount (C) to produce a 1:1 complex with protein (binding to bovine serum albumin)

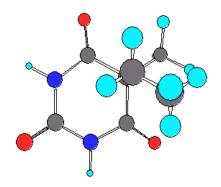


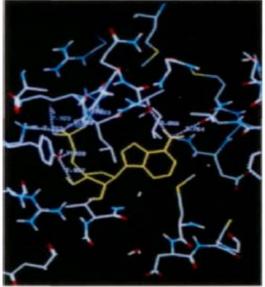
Barbituric Acid (000077-02-1)



Calculate C as a function of octanol-water partition coefficient of the candidate compounds: $Log_{10}(1/C) = 0.58 log_{10}P + 0.239$

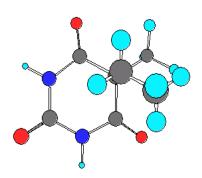
Problem Statement-1: From the derivatives of Barbituric acid, identify the candidate that is required in the smallest amount (C) to produce a 1:1 complex with protein (binding to bovine serum albumin)


Barbituric Acid (000077-02-1)


Calculate C as a function of octanol-water partition coefficient of the candidate compounds: $Log_{10}(1/C) = 0.58 log_{10}P + 0.239$

Question: How is the *backbone* (barbituric acid) identified and how is the relation (drug activity) between *C* vs log₁₀*P* found?

Problem Statement-1: From the derivatives of Barbituric acid, identify the candidate that is required in the smallest amount (C) to produce a 1:1 complex with protein (binding to bovine serum albumin)


Barbituric Acid (000077-02-1)

Calculate C as a function of octanol-water partition coefficient of the candidate compounds: $Log_{10}(1/C) = 0.58 log_{10}P + 0.239$

Solution Steps: Generate candidates; calculate LogP; calculate C; order solutions w.r.t. C to identify the best candidate; check for solubility in water

Problem Statement-1: From the derivatives of Barbituric acid, identify the candidate that is required in the smallest amount (C) to produce a 1:1 complex with protein (binding to bovine serum albumin)

Solution Steps

- Generate candidates (check database)
- Use ProPred to calc LogP and LogWs
- Calculate C

Barbituric Acid (000077-02-1)

• Order solutions with respect to C

Calculate C as a function of octanol-water partition coefficient of the candidate compounds: $Log_{10}(1/C) = 0.58 log_{10}P + 0.239$

Candidates (CAS Numbers) : 061346-87-0; 000076-94-8; 091430-64-7; 001953-33-9; 007391-69-7; 090197-63-0; 017013-41-1; 027653-63-0

SPEED Other Applications of CAMD

- Drug design
- Specialty chemicals design
- Lubricant design
- Refrigerant design
- Solvents for reaction synthesis
- Formulation design
- Polymer design

Scope of CAMD is very large but application is limited by availability of suitable property models

Summary

SPEED

- Extension to mixture (blend) design is simple and easy
- Integration of process and product design is possible (covered in lecture 3)
- Available software: ICAS-ProCAMD