Conceptual Process Design: Process Synthesis

Process Flowsheet Synthesis: Method to determine a process flowsheet that satisfies all product, operational and other requirements

Case Study: Utilize 75 million kg/y of excess ethylene

What can we produce from Ethylene that can be sold profitably?

One alternative – Ethanol

Questions

How pure is ethylene source? 96%EL, 3%PL, 1%M What are the consequences of impurities? By-products (DEE, IPA, W, CA) & purge? How much ethanol to make and at what purity? 150000m3/y at 190 proof (85.44% mole) of ethanol What is the next step?

Make a quick cost evaluation & establish the flowsheet requirements (see section 2.4.1 of textbook) - \$72 - \$82 million/y (profit), but operating cost/y and annualized capital cost/y needs to be subtracted.

Case Study: Utilize 75 million kg/y of excess ethylene

Properties: M_w , density, T_m , T_b , H_{vap} , $P_{vap}(T)$, T_c , P_c

Case Study: Utilize 75 million kg/y of excess ethylene to produce 150000 m3/y at 85.44%mole purity ethanol

Task 3: Generate a process flowsheet (chapter 2) – process synthesis

Next: Task 4 (perform a simple mass balance)

Basic Steps in Flowsheet Synthesis

- * Gathering Information (tasks 1-2)
- * Representing Alternatives (e.g., by flow-diagrams)
- * Criteria for Assessing Preliminary Designs
 - Economic evaluation
 - Environmental concerns
 - Safety analysis
 - Flexibility & controllability

* Synthesis method (generate and test alternatives)

Synthesis Method: Generate & test alternatives

- * Total enumeration
- * Evolutionary methods
- * Mathematical programming
- * Hybrid

Establish targets for the design

Generate (feasible) alternatives that will match the targets

Order all the feasible alternatives and select the most appropriate

Synthesis Method: Generate & test alternatives

- * Total enumeration
- * Evolutionary methods
- * Mathematical programming
- * Hybrid

Concepts:

Superstructure & Alternatives

Synthesis Method: Generate & test alternatives

Decomposition Strategies for Process Synthesis

- Bounding Strategies for Process Synthesis
- Hierarchical Decomposition for Process
 Synthesis

 $P_{1} = C_{p} F_{p} - C_{r} F_{r} = \text{Original space} = \text{Profit bound}$ $P_{2} = P_{1} - \text{Constraints} = \text{Profit bound}$ $P_{3} = P_{2} - C_{op}$ $P_{4} = P_{3} - C_{op}$ $P_{4} = P_{3} - C_{op}$

Decomposition Strategies for Process Synthesis

- Bounding Strategies for Process Synthesis
- Hierarchical Decomposition for Process Synthesis

Design problem decomposed into a hierarchy of decisions

Another view of how to find the target process flowsheet!

Where is Wally? Donde esta Waldo? Hvor er Holger?

.

.

Our target process flowsheet

Another view of how to find the target process flowsheet!

Case Study: Utilize 75 million kg/y of excess ethylene

Properties: M_w, density, T_m, T_b, H_{vap}, P_{vap}(T), T_c, P_c

Properties of the compounds found in the process

Species	W water	EA ethyl- alcohol	EL ethylene	DEE diethyl- ether	M	PL propylene	JPA isopropyl- alcohol	CA croton aldehyde
Formula	$H_{2}O$	CH ₃ CH ₂ OH	CH2=CH2	$(C_2H_5)_2O$	CH_4	CH ₃ CH=CH ₂	CH ₃ CH-	СН₃СН=СН
MW Sp. Gr. Mek Pt, "C	18.02 1.0 0	46.07 0.789 114.5	28.05 0.56 -169.2	74.12 0.708 (16.3(<i>0</i>)	16.04 -182.5	42.0 8 0.6 09 -185.3	OHCH ₃ 60.10 0.785 69.5	CH=0 70.09 159-160
BP, °C ΔΗ _ν (keal/ mo)	100 539.55	78.4 204.3	-103.7 115.4	34.6	- 161.5 121.9	47.7 104.6	82.4 159.4	·
VPA ¹ VPB VPC ℓ _c °C Γ _{ct} atm	8.10765 1750.286 235.0 374.14 217.6	8.04494 1554.3 222.65 243.5 63.1	6.74756 585.00 255.00 9.6 50.7	7.4021 1391.4 273.16 193.8 35.5	6.61184 389.93 266.00 82.1 45.8	6.81960 785.00 247.00 91.4 45.4	6.66040 813.055 132.93 235.16 47.02	

TABLE 1.3 Physical Property Data for Species

 $^{1}VP(mm Hg) = 10^{A-B/(C+t(^{O}C))}$ where VP is vapor pressure and t is temperature.

Check if all the listed values are correct!

Level 1: Decisions on Batch versus Continuous

Consider,

- Technical Information
 - Does any apparatus work in batch mode? Is process sensitive to upsets & variations? No batch mode
 - Production Rate
 - High or low production rate? Only few days production needed? Few days operational notice? High production rate
 - Product Lifetime
 - One or two years or longer? Longer
 - Value of Product
 - Product value >> manufacturing cost? Yes

Note: Several batch units can be combined to give a continuous production! – Conclusion: continuous process

Level 2: Decisions on Input-Output Structure

Consider,

- Raw materials what to do with impurities ?
- How many product streams?
- Recycle streams? Purge streams?
- Reversible by-products? Recycle or recover?
- Selectivity versus cost

Three Types of Decisions (Assumptions)

- 1. Decision that fix parts of the flowsheet
- 2. Decisions that fix some of the design variables
- 3. Decisions that fix connections to the environment

Level 2: Decisions on Input-Output Structure

Raw Materials - Impurities?

- If the impurities are inert, remove them after reaction, if they are valuable **OK**
- •If the impurities are inert, present in large amounts, and, can be easily separated, remove them before the reactor No

• If the impurities have boiling points lower than reactants and products, and, they are also inert, recycle them (note: purge unit will be needed!) - OK

• If the impurities are also products from the reactor, place the feed stream before the unit that will remove the impurities - No

Level 2: Decisions on Input-Output Structure

Product streams?

Observe the following Rules

- Recycle unreacted reactants OK
- Recycle intermediate reactants (products) ??
- Recycle/remove azeotropes with reactants* ??
 - Remove (recover) the main product OK
- Remove (recover) the valuable by-products OK
- Remove (as waste)/recycle by-products that are not valuable OK

Level 2: Decisions on Input-Output Structure

<u>Recycle? Purge Units</u>? Consider *the following:*

- For < 100% conversion of reactants and reaction in the gas phase,
 - Recycle of gases will be necessary YES
 - If impurities are present, purge units will be necessary YES
- For < 100% conversion and reaction in the liquid phase,
 - Recycle of liquids (reactants) will be necessary
 - If impurities are present, purge units will be necessary

Level 2: Decisions on Input-Output Structure

<u>Reversible by-products</u>? <u>Selectivity versus cost</u>?

EP₂ = Product value + Byproduct value – Raw material value

Function of conversion, selectivity, reaction T & P,

Level 2: Decisions on Input-Output Structure

<u>Reversible by-products</u>? <u>Selectivity versus cost</u>?

EP₂ = Product value + Byproduct value + Raw material value

Function of conversion, selectivity, reaction T & P,

EP2 is approximately \$(US) 82 million (see chapter 2)

Note: Since you know the amount of product you will make and the raw materials needed, EP_0 (product value – raw material value) can be calculated already at the start and then refined at level-2

Ethanol Process Flowsheet at the end of Level 2

Level 3: Decisions on Recycle Structure & Reactor

Consider,

- Number of reactors?
- Number of recycle streams?
- Need for compressor/pump?
- Reactor type? Adiabatic or Isothermal?
- Reaction equilibrium or kinetics?
- Reactor cost (capital & operating)?

Level 3: Decisions on Recycle Structure & Reactor

- Number of reactors?
 - If more than one reaction is needed to get the desired product, more than one reactor will be needed if the conditions are very different –
- Number of recycle streams?
 - Depends on the number of raw materials and conversion of all reactants 2 recycles??
- Need for compressor/pump?
 - Compressor for gas recycle; pump for liquid recycle OK
- Reactor type? Adiabatic or Isothermal?
 - If temperature change is too high or low, heating or cooling will be needed – Isothermal – heating is
 - Reaction equilibrium or kinetics?
 necessary
 - Kinetically controlled or equilibrium reached? –
- Reactor cost (capital & operating)?

EP₃ = **EP**₂ – **Compressor/pump cost** – **Reactor cost**

Course: Process Design Principles & Methods, L2, PSE for SPEED, Rafiqul Gani

1 reactor??

_____ Kinetically controlled **Ethanol Process Flowsheet at the end of Level 3**

25

Level 4: Decisions on Separation System

Vapour recovery and/or Liquid recovery? - Rules

- If reactor stream is in liquid phase, use liquid recovery
- If reactor stream has 2 phases (separate the 2 phases first)
 - Use vapour recovery for vapour phase
 - Use liquid recovery for liquid phase
- Reactor stream is gas (vapour) phase
 - Perform phase split (if possible) by reducing temperature (ie., condenser) and then separate the 2-phase. Otherwise, use OK vapour recovery

How to locate & perform the separation? Evaluate properties of compounds

EP₄ = **EP**₃ – Vapour recovery cost – Liquid recovery cost

Ethanol Process Flowsheet during Level 4

EL, PI, M recycle

Level 4: Decisions on Separation System

Vapour Recovery System (VS) - Location

- If vapour stream contains significant amount of valuable material (reactants, impurities, product), place VS after purge unit ??
- If vapour stream contains components that may slow down the reaction or destroy or affect the catalyst, place VS on the recycle stream
- If both the above criteria are satisfied, place VS after a "phase ?? split" unit
- If none of the above are satisfied, VS is most likely not necessary!

How to perform the separation?

Condensation (high pressure and/or low temperature) Absorption (needs solvent and solvent recovery – try water!) ?? Adsorption (needs adsorbent and regeneration of adsorbent) Membrane separation (suitable membrane, low flux, etc.)

Level 4: Decisions on Separation System

Liquid Recovery System (LS) - Decisions on ...

- Which separations can be made with distillation? All ?
- Sequence of distillation columns
 Order compounds in terms of Tb
- Removal of light ends (send to VS if valuable, otherwise, waste disposal) Yes
- Other types of separations possible? Yes but not necessary now

Rule for selecting separation by distillation or phase split (V-L)

- If α > 1.1, between two key components, use distillation provided the key components do not form azaotrope
 Yes, there are azeotropes
- If α >>> 1.1, try phase split (condensation or vaporization)
 Tb of ethanol, IPA & azeotrope have values very close to each other

Rules for sequencing of distillation columns

- Recover lightest component first OK
- Recover most plentiful component first OK
- Make the most difficult separation last
- Always try equimolar separations

FIGURE 3.1 Ethanol flowsheet.

Course: Process Design Principles & Methods, L2, PSE for SPEED, Rafiqul Gani

30

Flowsheet alternatives versus new developments

Method for Separation Process Synthesis Separation Process Identification

Step 1: Mixture Analysis (*number of components in mixture, mixture type, mixture state, temperature, pressure, number of binary pairs, azeotrope pairs, etc.)*

Step 2: Generate binary ratio matrix

 $R = r_{ij} = p_{iA} / p_{iB}$ for property I, binary pair j compounds A & B in pair j

Step 3: Identify separation technique

If, $r_{min} < r_{ij} < r_{max}$ for separation technique k, select this technique for separation of the compounds in the binary pair j

Step 4: If more than one separation technique is feasible for binary pair j, select the separation technique with the largest r_{ij} value

Principle for separation is a driving force created by a difference in property; different separation techniques employ different properties!

Method for Separation Process Synthesis Separation Process Identification

***** Mixture Analysis Report:

* A multi component mixture property is to be calculated.

* Based on simple mixture analysis (no use of thermo. model) the mixture at the specified condition is probably of GLE.

* The property probably does not have composition extremes.

- * Pressure is in the very high range.
- * At least one component is in its critical/super critical region.
- * Mixture is of the AQUEOUS type.
- * This is a SUPERCRITICAL system.
- * The mixture is probably non-ideal.

Mixture Analysis		×
Stream Stream1	Item Nature of Mixture Binary azeotropes Eutectic Points Potential MSA Flashpoint Dilute	OK Cancel

Separation Process Identification

 ial y Azeoci opes				
Cancel Back				
Component 1/Component 2	Tboil	Pressure	X(1)(mole)	X(2)(mq
DIETHYL-ETHE / ETHANOL	418.98	17.000	0.839400	0.1606
DIETHYL-ETHE / WATER	418.38	17.000	0.784700	0.2153
DIETHYL-ETHE / ISOPROPANOL	420.71	17.000	0.958500	0.0415
ETHANOL / WATER	445.20	17.000	0.806200	0.1938
WATER / ISOPROPANOL	447.21	17.000	0.359900	0.6401

nary Azeotrone

Binary Ratios

Back..

Properties..

Components	Normal Boiling	Dipolemoment	Rad of Gyration	Normal Melting	Triple
PROPYLENE · DIETHYL-ETHE	1.36	3.15	1.41	1.78	1.78
PROPYLENE - ETHANOL	1.56	4.62	1.00	1.81	1.81
PROPYLENE · WATER	1.66	5.06	3.67	3.11	3.11
PROPYLENE - ISOPROPANOL	1.58	4.54	1.25	2.11	2.11
DIETHYL-ETHE - ETHANOL	1.14	1.47	1.41	1.01	1.01
DIETHYL-ETHE - WATER	1.21	1.61	5.17	1.74	1.74
DIETHYL-ETHE - ISOPROPANOL	1.16	1.44	1.13	1.18	1.18
ETHANOL - WATER	1.06	1.09	3.67	1.72	1.72
ETHANOL - ISOPROPANOL	1.01	1.02	1.24	1.16	1.16
WATER - ISOPROPANOL	1.05	1.11	4.56	1.47	1.47

X

34

Separation Process Identification

Feasibel separationtechniques and related properties

Cancel Pro	operties	¤) = Dilute compound in binary pair.				
Components	septech.	Gasadsorption	Flash/evaportn	Stripping	^	
PROPYLENE /	rel. prop.	8, 20.	22.	19.		
Components	septech.	Gasadsorption	Flash/evaportn			
PROPYLENE /	rel. prop.	8.	7, 22.			
Components	septech.	Absorption	Gasadsorption	Flash/evaportn		
PROPYLENE /	rel. prop.	19.	8, 20.	7, 22.		
Components	septech.	Gasadsorption	Flash/evaportn			
PROPYLENE /	rel. prop.	8, 20.	7, 22.			
Components	septech.	Gasadsorption	Distillation	Liquid membran	Pervaporation	
DIETHYL-ETHE / ETHANOL	rel. prop.	8, 20.	7, 22.	9, 13, 19.	13, 19.	
Components	septech.	Absorption	Gasadsorption	Crystalization	Distillation	
DIETHYL-ETHE /	rel. prop.	19.	8, 20.	10.	7, 22.	
Components	septech.	Gasadsorption	Distillation	Liquid membran	Pervaporation	
DIETHYL-ETHE /	rel. prop.	8, 20.	7, 22.	9, 13, 19.	13, 19.	
Components	septech.	Gasadsorption	Crystalization	Distillation	Extractiv dist	
ETHANOL / WATER	rel. prop.	20.	10.	7, 22.	7.	
Components	septech.	Gasadsorption	Extractiv dist	Liquid membran	Pervaporation	
ETHANOL /	rel. prop.	20.	7, 22.	9, 13.	13, 19.	
Comognents	sen -tech	Gasadsorption	Crustalization	Distillation	Extractiv dist	
•					•	

×

35

Superstructure representation & flowsheet selection

Special Flowsheet Generation for Specialty Chemical Products

Example: Manufacture of Carnosic acid by recovering it from popular herbs (Harjo et al 2004)

Downstream Processing: Recovery & purification of Insulin

Example of process synthesis: HDA-process

• Hydroalkylation of Toluene to Benzene – generate flowsheet using the hierarchical decomposition approach

Benzene from Toluene Process

Reactions:

Toluene + H2 \rightarrow Benzene + CH4

2 Benzene \leftrightarrow Biphenyl + H2

Benzene production = 265 kmol/h Product purity > 99.9% Toluene feed, liquid at 300 K H2 feed (95% H2, 5% CH4 at 311 K Toluene conversion, 75% Selectivity, 0.9694 H2/aromatics = 5 reactor inlet Temperature, 639 K Pressure, 34 atm

Tutorial exercise in class

	Tb	Тс	ρ_{L}	Pv	Tm	
	K	K	a	t 300 K	K	
H2	20.39	33.19	0.03	4x10 ⁷	13.95	
CH4	111.66	190.56	0.04	1.8x10 ⁷	90.69	
В	353.24	562.16	0.09	14000	278.68	
Т	383.78	591.80	0.10	4158	178.18	
BP	529.25	789.26	0.15	-	342.37	
ρ_{L} is molar liquid density in kmol/m3						
Pv is vapor pressure at 300 k in Bar						

Home Exercise

- Production of Maleic Anhydride generate flowsheet using the hierarchical decomposition approach
- Downstream separation of a bio-process

MA from n-Butane Process
Catalyst VPO
$2C_4H_{10} + 7O_2 \rightarrow 2C_4H_2O_3 + 8H_2O_3$
$2C_4H_{10} + 9O_2 \rightarrow 8CO + 10H_2O$
$2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O$
$C_4H_2O_3 + 3O_2 \rightarrow 4CO_2 + H_2O$
$C_4H_2O_3 + O_2 \rightarrow 4CO + H_2O$

	Tb	Tm	D_L	Pv(300)		
AN	475	326	13.8	-		
0	82	68	-	252		
02			15	66		
02	90	54	-	274		
120	373	273	55	0.035		
N-C4	274	134	9.8	2.6		
D _L is liquid density at 300 K in kmol/m3						
Pv is vapor pressure at 300 k in Bar						