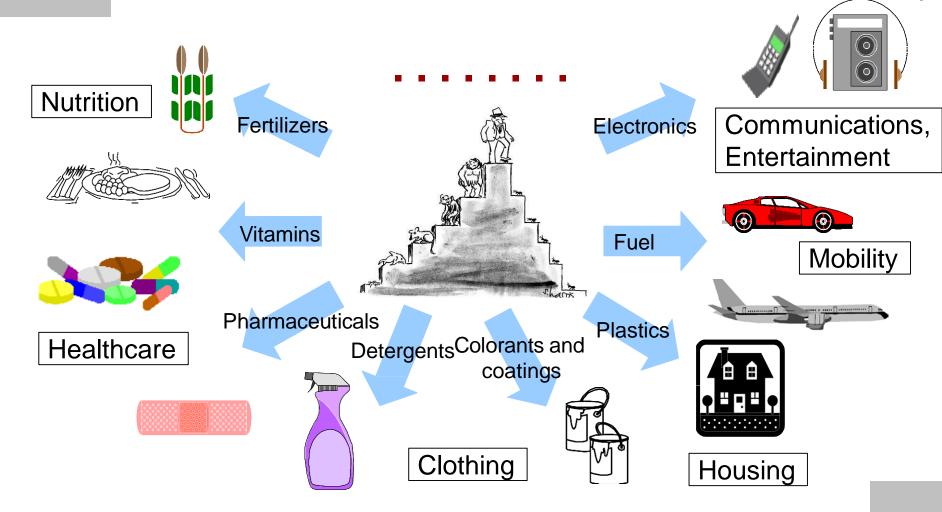


New Vistas in Chemical Product & Process Design

Rafiqul Gani

PSE for SPEED, Skyttemosen 6, DK3450 Allerod, Denmark (Head office: Bangkok, Thailand)


> rgani2018@gmail.com http://www.pseforspeed.com/

The big picture

SPEED Master of the planet earth – how did we get there?

Positive contributions to society

Our survival depends on the products we make from the resources we have

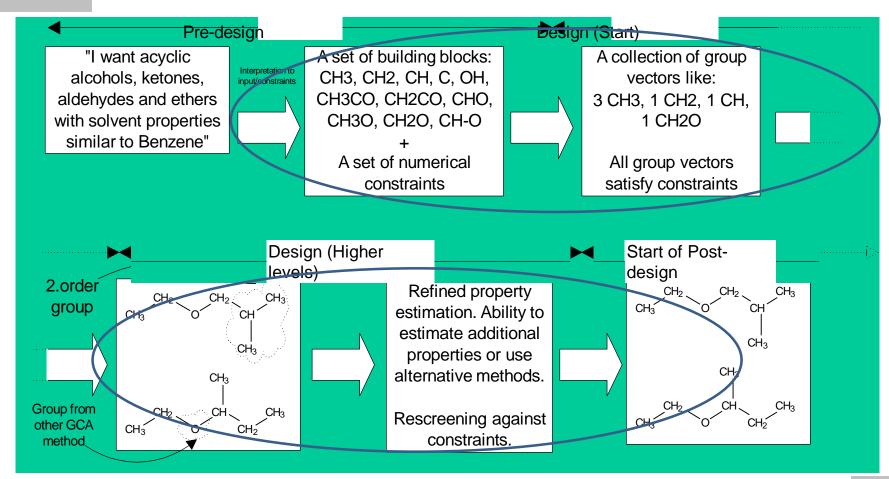
SPEED The chemical product tree

Question of what, why & when (how)?

Refined chemicals & Consumer products (~3000) Plastics, Pharmaseuticals, Dyes, Solvents, Fertilizers, Fibres, Dispensers, Cosmetics	ŗ	High		Low	
Definition of the second se	> Product price>	→ Molecular size	Number of alternatives	Production rate	
Raw Materials (~10) Petroleum, Natural Gas, Biomass,Roack, Salt, Phosphate, Sulfur, Air, Water,		Low	L	High	

S	SPEED Chemical product classification					
	Product	Single	Single species		Multiple species	
	Type Issues	Small	Large	Formulated	Functional	Devices
	Examples	Solvents, refrigerants	APIs, surfactants, membranes	Blended fuels, solvents, lubricants	Detergents, personal care, healthcare, medicinal	Fuel-cells, microcapsules, hemodialysis device
	Key factors in design	Cost of production		Cost and product functions	Product f	unctions
		N.A.		Time to mar		
	Basis of design	Process flowsheet (unit operations)	Synthesis routes (chemistry)	Blend properties and stability	Microstructure	Device form and constituent materials

	Closely related to process Translation of	application	Closely related to application	satisfaction	Consumer satisfaction Translation of needs to
Challenges structure Translation of needs to properties		Delivering product defined by needs	t functions	product material properties and	


	in design	structure	properties			properties and configuration	
			Large number of product alternatives		error approach (non-optimal product)		
	Risks		Feedstock availabili	ty	Absence of engineering science knowledge		
			Environmental impact and sustainability				

The concepts

SPEED Design of single species products

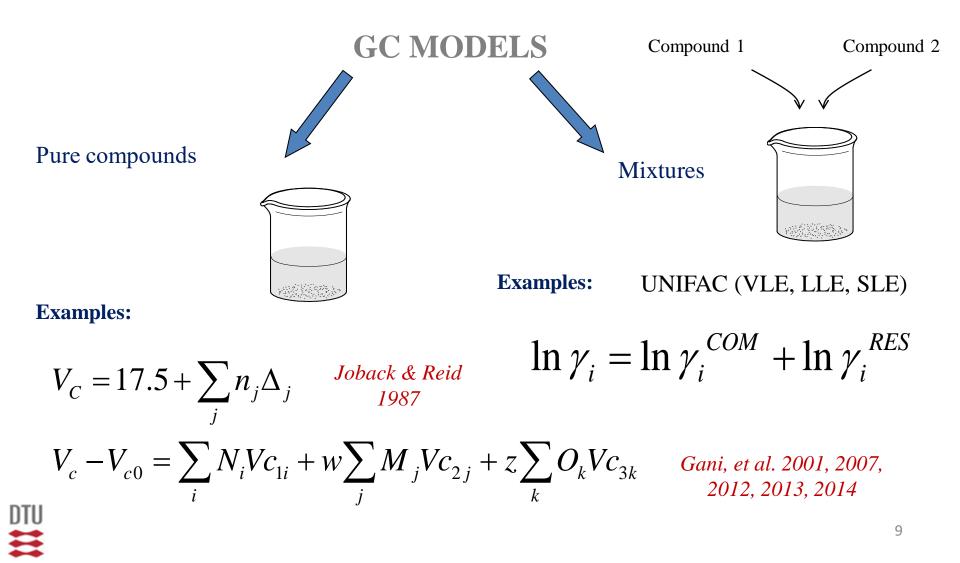
Find molecules with desired properties (also valid for mixtures)

Computer aided molecular design (generate & test)

Generation of Alternatives

Groups as building blocks: CH_3 -, - CH_2 -, - OH, CH_3CO -, ... (a set of about 180 groups available)

Structural constraints (acyclic molecules)


$$\sum_{j=1}^{m} (2 - u_j) n_j = 2q \qquad \sum_{i \neq j}^{m} n_i = n_j (u_j - 2) + 2 \quad \forall j$$

Size constraints

$$n_j^l \le n_j \le n_j^u \quad \forall j \qquad \qquad 2 \le \sum_{j=1}^m n_j \le n_{\max} \qquad n = \sum_{j=1}^m n_j$$

Example: $CH_3 - CH_2 - OH$: Ethanol (3 groups)

Evaluation of Generated Molecules: Models Group contribution (GC) methods for property prediction

SPEED Amino acids property modelling

Compound:	Molecular structure			
L-Phenylalanine methyl ester	O II			
hydrochloride	OCH3			
Molecula formula:		NH ₂ • HCl		
C6H5CH2CH(NH2)COOCH3 · HCl				
First-order groups	Occurrences	Group-contribution		
CH3	1	0.7473		
aCH	5	0.4297		
aC-CH2	1	-0.2869		
COO (except as above)	1	1.966		
-HCl	1	0.4662		
Second-order groups	Occurrences	Group-contribution		
-		-		
Third-order groups	Occurrences	Group-contribution		
CH(NH3+Cl-)-(CH2)n-COO-	1	-0.9282		
(CH2)m n in (0,2); m in (0,,2)				
$exp\left(\frac{Tm}{Tm0+a*MW}\right) = \sum_{i} NiCi + \sum_{j} MjDj +$	$\sum_{l} EkOk \implies T_m \text{ pred} = 430$.9 (Note: $Tmo = 237.0611$ K; $a = -$		

0.0914 K mol g⁻¹). The experimental value of T_m is 433.2 K. Hence, absolute deviation = 2.2 K

Polymer Design: MINLP Applied to CAMD

Fobj =
$$\Sigma [(P_i - P_i^*)/P_i^*]^2$$

s.t.

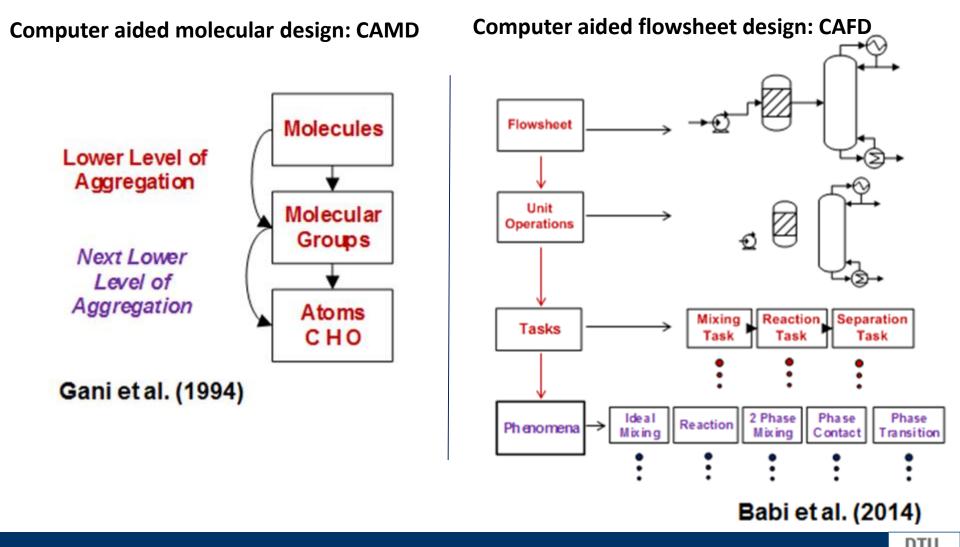
353 K < T_g = $[\Sigma (Y_k n_k)] / [\Sigma (M_k n_k)] < 393$ K

 $1.4 < \rho = [\Sigma (M_k n_k)] / [\Sigma (V_k n_k)] < 1.5 \text{ g/cm}^3$

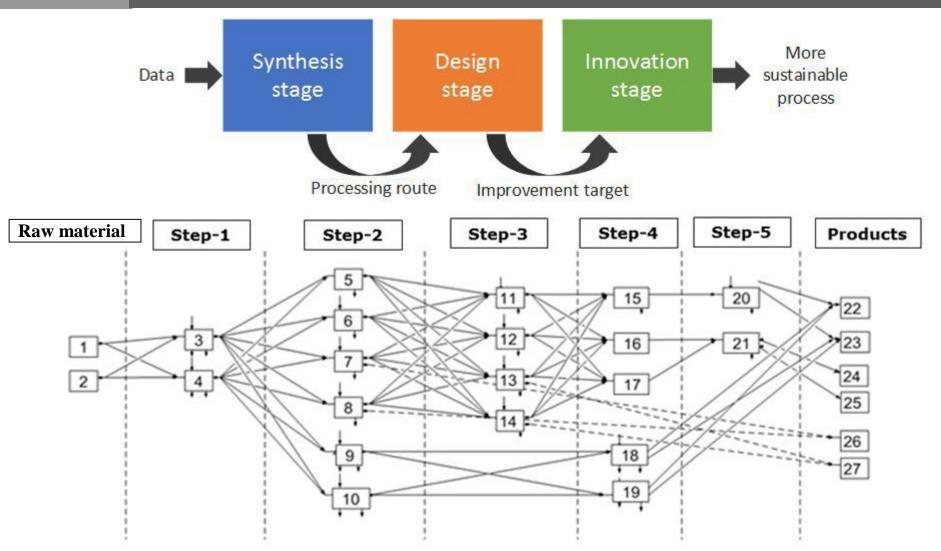
 $0.0045 < W = [\Sigma (H_k n_k)] / [\Sigma (M_k n_k)] < 0.0055) g H_2O/g polymer)$

 $2 \le \Sigma y_j \le 3$; $y_j : 0 \text{ or } 1 \text{ for } j=1,7$

 $2 \le \Sigma y_k n_k \le 9$


-CH2- ; -CO- ; -CO- ; -O- ; -CONH- ; -CHOH-; -CHCL-

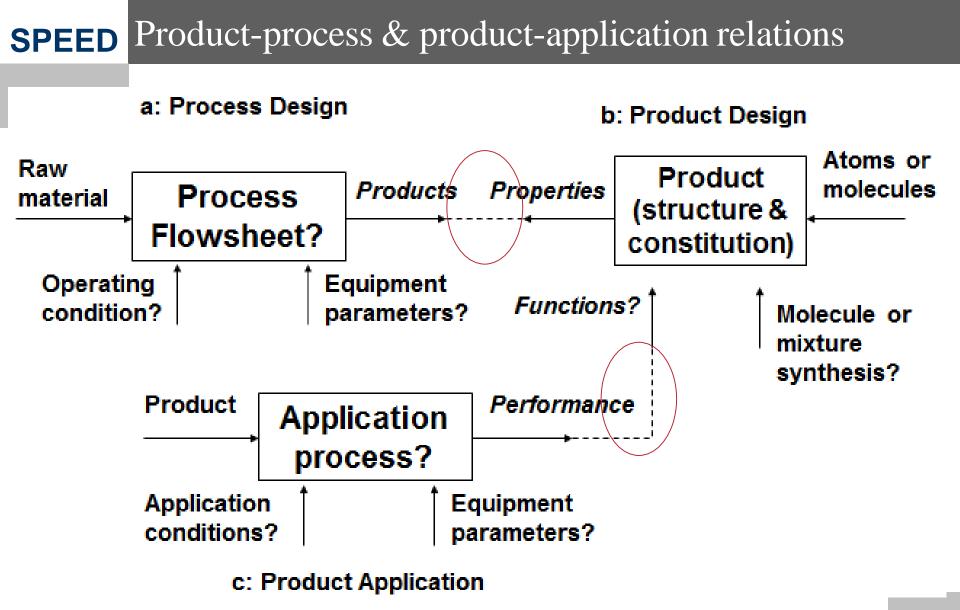
Note: objective function and constraints are non linear; n_k , the optimization variables are integer (0-9)


Polymer repeat units designed for bottle-stops; synthetic fibers; coatings, etc (CACE 2009)

Extension to process flowsheet synthesis

CAMD versus CAFD

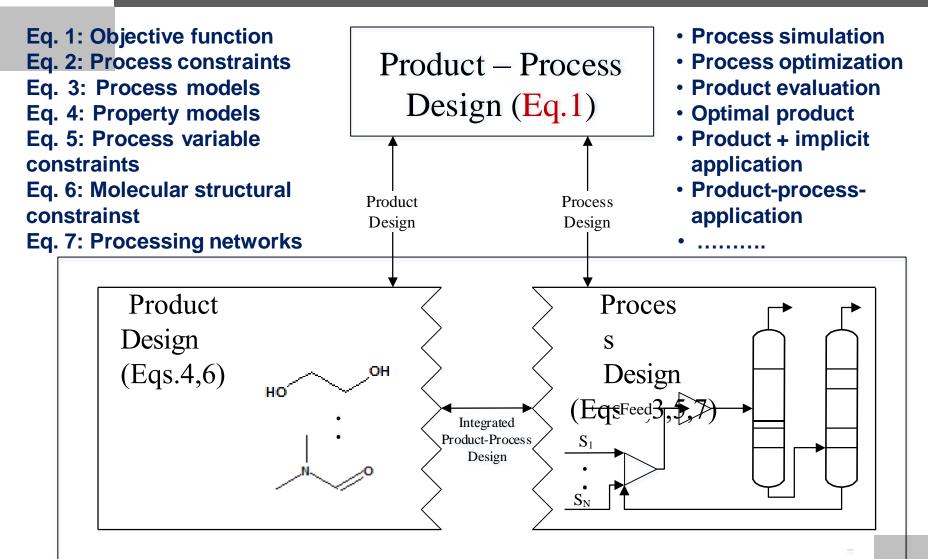
Sustainable Product-Process Development



Applications: Biorefinery; CCU; CAMD; Waste-water treatment;

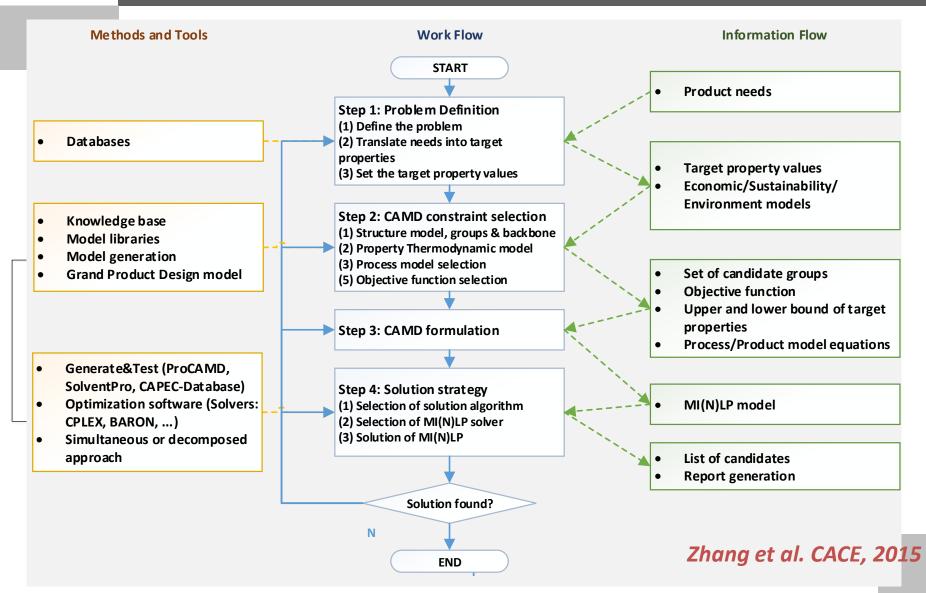
DTU

The problem definitions

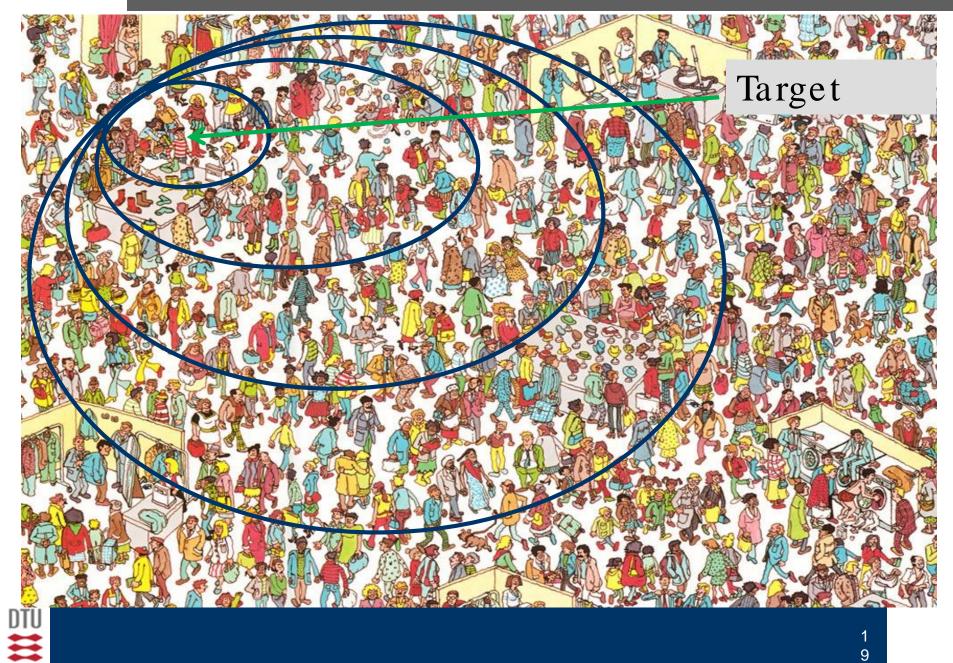


Problems may have multiscale & multidiscipline features

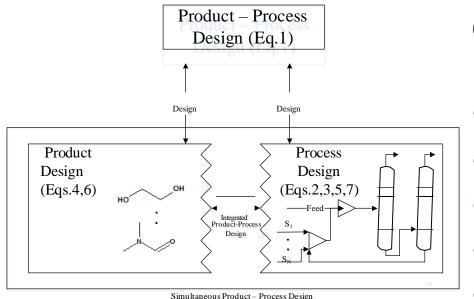
SPEED Mathematical generic problem formulation $Fobj = min \{C^{T}y + f(\underline{x}, \underline{y}, \underline{u}, \underline{d}, \underline{\theta}) + S_e + S_i + S_s + H_c + H_p\}$ (1) process constraints (Eq. 2) $0 = h_1(x, y)$ $0 = P(f, x, y, \underline{d}, u, \underline{\theta})$ process model (Eq. 3) $\underline{\theta} = \underline{\theta}(\underline{f}, \underline{x}, \underline{y})$ product-property model (Eq. 4) $I_1 \leq g_1(\underline{x}, \underline{u}, \underline{d}) \leq u_1$ process variable constraints (Eq. 5) molecular structure constraints (Eq. 6) $I_2 \leq g_2(\underline{x}, \underline{y}) \leq u_2$ $\mathbf{B} \mathbf{x} + \mathbf{C}^{\mathsf{T}} \mathbf{y} \ge \mathbf{D}$ process networks (Eq.7)


<u>x</u>: real-process variables; <u>y</u> integer-decision variables;
 u: process design variables; d: process input variables;
 θ: property; B, C, D coefficient matrices

SPEED Different problem formulations

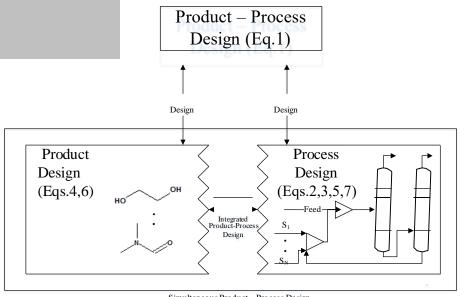


Simultaneous Product – Process Design (multiscale & multidiscipline)


SPEED Concept of model based framework

Mathematical Problem Solution

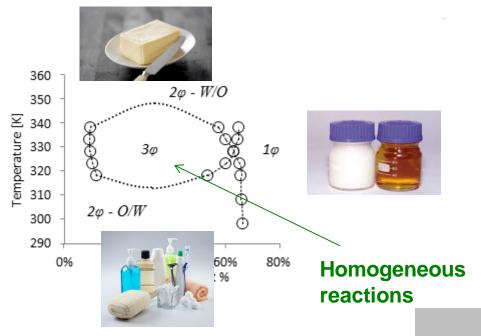
SPEED



Eqs. 4, 6 with or without Eq. 1 (product design and implicit performance verification) **Examples:** Molecular design (single species products)

- Solvents
- Process fluids
- Surfactants
- Active ingredients
 - Polymer repeat units

20


SPEED

Simultaneous Product – Process Design

Eqs. 4, 6 with or without Eq. 1 (product design and implicit performance verification)

Examples: Molecular design (single molecular products) -**Surfactants**

SPEED Surfactant Design - Product Design (1/3)

• Step 1: Design of a UV sunscreen, in the emulsified form, with a high sun protection factor. The phenol ring is fixed as backbone structure in this case study.

• Step 2: Convert needs-functions to properties

- **Objective:** Toxicity should be minimized, but higher than a lower bound
- Group selection: CH_3 , CH_2 , CH, C, aCH, aC-OH, CH_2COO , CH_3O , CH_2O , aC-O, OCH_2CH_2OH from 220 groups (Marrero and Gani, (2001)).
- Backbone selection: -C₆H₄OH

- Structural and property constraints:

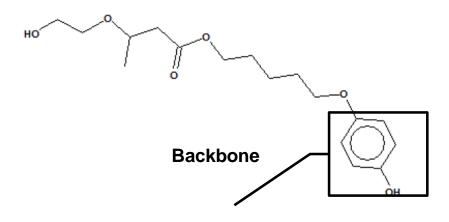
Need	Lower bound	Upper bound
N_G	10	15
N_F	0	8
lc50	3.16log(mol/L)	-
Sp	-	25MPa ^{0.5}
clp	343.15K	-
Fp	343.15K	-
Vm	0.1 cc/mol	0.3cc/mol

*LC*₅₀: Fathead Minnow 96-hr exposure; *Sp*: Hildebrand solubility parameter; *clp*: cloud point; *Fp*: Flash point; *Vm*: Liquid molar volume at 298K.

SPEED Surfactant Design (2/3)

Step 3: Formulate the mathematical problem

 $\max lc50 = lco + \sum_{i_1} n_{i_1}^{(1)} lc50_{i_1}^{(1)} + \sum_{i_2} n_{i_2}^{(2)} lc50_{i_2}^{(2)}$ 2. Pure component property constraints: $\sum_{i_1} n_{i_1}^{(1)} lc50_{i_1}^{(1)} + \sum_{i_2} n_{i_2}^{(2)} lc50_{i_2}^{(2)} \ge 3.16$ 1. Structural constraints: 1.1 Octet rule and group number constraints: $Spo + \sum_{i_1} n_{i_1}^{(1)} Sp_{i_1}^{(1)} + \sum_{i_2} n_{i_2}^{(2)} Sp_{i_2}^{(2)} \leq 25$ $(2 - \nu_{i_1}) \, n_{i_1}^{(1)} = 0$ $\sum_{i_1} n_{i_1}^{(1)} clp_{i_1}^{(1)} \ge 343.15^2$ $Fpo + \sum_{i_1} ni_1^{(1)} Fp_{i_1}^{(1)} + \sum_{i_2} n_{i_2}^{(2)} Fp_{i_2}^{(2)} \ge 343.15$ $0.1 \le Vmo + \sum_{i_1} ni_1^{(1)} Vm_{i_1}^{(1)} + \sum_{i_2} n_{i_2}^{(2)} Vm_{i_2}^{(2)} \le 0.3$ $\sum \quad n_{i_1}^{(1)} \ge n_{i_1'}^{(1)} \left(\nu_{i_1'} - 2 \right) + 2 \quad \forall i_1'$ $1 \le n_{i_1}^{(1)} \le 5 \quad \forall i$ $10 \le \sum n_i^{(1)} \le 15$ 1.2 Adjacency matrix constraints. 1.3 Second-order group constraints.


#Equations: 1,324,764; #Variables: 1,286,278 (1,286,266 Integer variables).

• **Step 4:** This design problem can also be solved directly using the GAMS CPLEX solver.

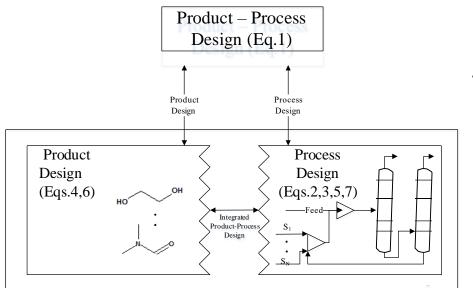
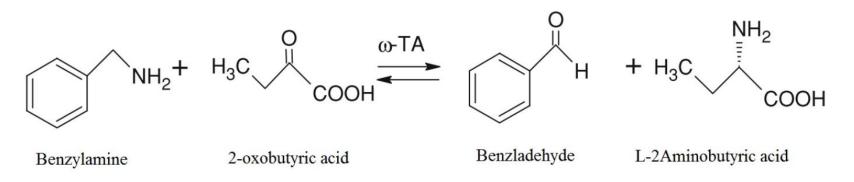

SPEED Surfactant Design (3/3)

Table: Optimization results of surfactant design problem

n_1	1 CH ₃ , 5 CH ₂ , 1 CH, 4 aCH, 1 aC–OH, 1 CH ₂ COO, 1 aC–O, 1 OCH ₂ CH ₂ OH
n_2	1 AROMRINGs1s4
lc50	4.124log(mol/L)
Sp	24.732MPa ^{0.5}
clp	300.016K
Fp	552.383K
Vm	0.281cc/mol



Simultaneous Product - Process Design

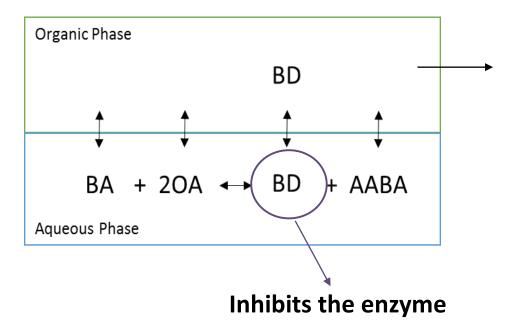
Eqs. 2, 3, 4, 5, 6 with or without Eq. 1 (product-process development; solvent designverification) Examples: Molecular and/or mixture design with process application

- Solvents for separations and/or product recovery
- Process fluids for specific operations
- Reactive agents

Generation of alternatives for the production of L-2-aminobutyric acid

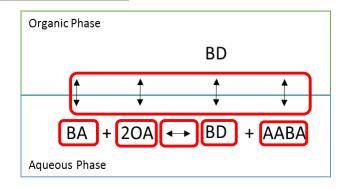
Objective of the study: Identify possible process hotspots to improve the process in terms of:

- Conversion to continuous manufacturing
- Solvent selection to improve productivity
 - Reaction improvement
 - Separation improvement


Generation of alternatives for the production of L-2-aminobutyric acid

Reaction type Database

- A. Single phase system
- **B.** Biphasic system


Experimental data available Kinetic model is not available

Solvent selection: Organic solvent that is,

- Immiscible with the aqueous phase
- Higher by-product selectivity

Generation of alternatives for the production of L-2-aminobutyric acid

Reaction type Database:

Experimental data

modeling (Anantpinijwatna et al. 2016) **Physical Equilibrium Mass Balance** 1 AAD: 1.8% 0,9 0,8 0,7 Conversion 0,6 0,5 0,4 0,3 0,2 • Single Phase System 0,1 **Oracle System** 0,5 1 1.5 2.5 3 3.5 4.5 5 Reaction Time (h)

Model development method: Multiphase reaction

Generation of alternatives for the production of L-2-aminobutyric acid

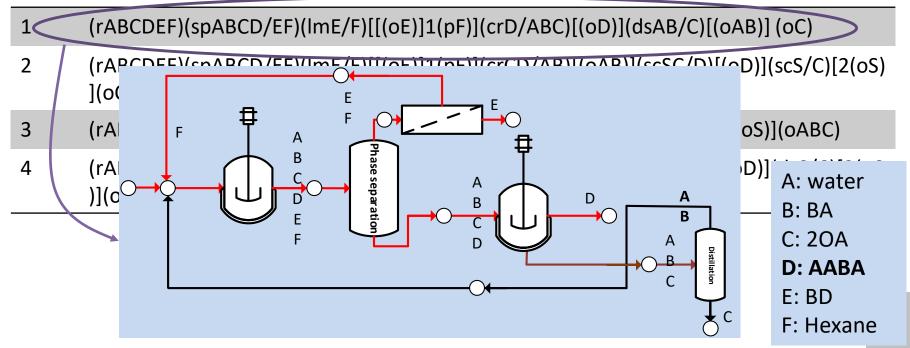
Extractive solvent selection:

Partition $\left(\frac{\gamma_i^{\alpha}}{\gamma_i^{\beta}}\right)$	Benzylamine	20 A	AABA	Benzaldehyde
Hexane	0.986	8.33E-06	4.50E-06	8.06E+03
Heptane	1.178	5.41E-06	3.56E-06	8.33E+03
Isooctane	3.096	8.33E-06	6.85E-06	1.59E+04
Octane	2.959	3.73E-04	1.19E-04	1.30E+04

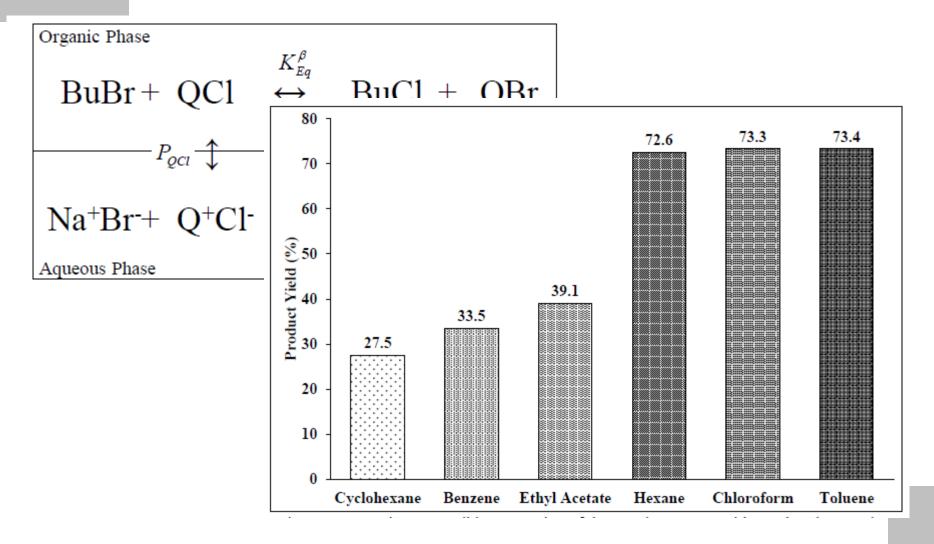
Batch to continuous :

Batch to continuous database

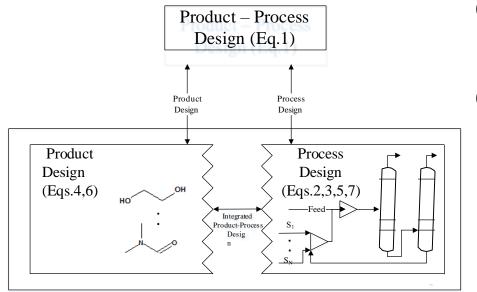
Enzyme membrane reactor


Facilitates enzyme stability and avoid the enzyme contact with the organic solvent in a continuous operation

Generation of alternatives for the production of L-2-aminobutyric acid


Objectives:

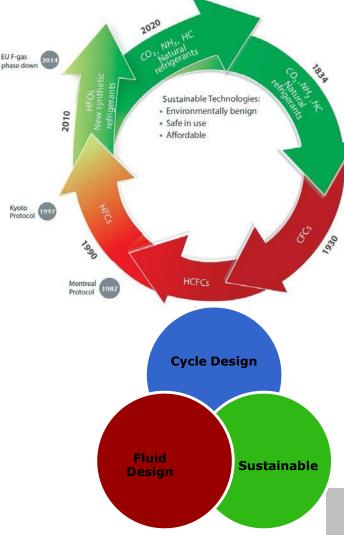
- Recover the main product
- Recover and recycle the extraction solvent (Hexane) and the reaction solvent (water)
- Recycle unreacted Benzamine


Rank Process alternatives [SFILES]

Other biphasic reaction-separation systems

SPEED

Simultaneous Product - Process Design


Eqs. 1-7: simultaneous product design & process application Examples: Molecular design (single molecular products) with process constraints

- Solvents for separations and/or product recovery
 Process fluids for specific operations
- Reactive agents

.

- Refrigeration cycle and fluid affect each Refrigerant and cycle design-1 other. Therefore, product and process application considered.
- Objective is to determine novel working fluids and mixtures that comply with current and upcoming regulations.
- Requirements for substitution of existing fluids:
 - New fluid should have same or improved cycle efficiency.
 - New fluid should have similar operational behavior.
 - New fluid should improve sustainability.

Relate process with product properties.Find optimal product-cycle design.

Refrigerant-cycle design: Step 1

 R134a is a commonly used refrigerant that is being phased out. Product properties that affect the process cycle: - Critical properties; - Heat capacity; Evaporator - Compressibility; Accentric factor; - Vapor pressure; Expansion Vavle Heat of vaporization... Р These product properties influence the process cycle and its efficiency. • Also, other properties (enthalpy, entropy, fugacity) are needed for process cycle design. Equation of state and for estimation of PVT relationship.

Condenser

- Look for novel fluids that can contain C, H, F and Cl (up to 10 groups).
- 30 molecular groups are selected from M-G method.
- Target properties are chosen for product and process:

Step 2

Target Property	Lower bo	und	Upper	bound
Molecular mass			110 g/	'mol
Normal boiling point			250 K	
Critical temperature	350 K		400 K	
Critical pressure	30 bar		50 bar	
Thermal conductivity (liquid, Thermal conductivity (liquid, The section of the se	o) 0.08 W/m	n.K		
Enthalpy of Vaporization at Tb	200 kJ/kg			
ODP			0	
GWP			1400	
Atmospheric Lifetime *			14 yea	irs
Number of groups	1		5	
Number of functional groups Process needs	1 Lower bound	Upper b	3 ound	
Evaporation temperature	313.15 K	333.15		
Condensation temperature	265.65 K	280.15		

Refrigerant-cycle design: Step-3 (complete model-1)

Molecular constraints

$$\sum_{i} n_i \left(2 - v_i \right) = 2$$

- $1 \le \sum_{i} n_i \le 10$ $0 \le \sum_{i} n_i \le 3$
- Property constraints

$$\sum_{i} n_{i} M w_{i} \geq 110 g / mol$$
$$T_{b0} \ln \left(\sum_{i} n_{i} T_{bi} \right) \geq 250 K$$

$$350K \le T_{c0} \ln\left(\sum_{i} n_i T_{ci}\right) \le 400K$$

$$30bar \leq \frac{1}{\left(\sum_{i} n_{i} P_{ci} + P_{c02}\right)^{2}} + P_{c01} \leq 50bar$$

$$\frac{1}{\left(\sum_{i} n_{i} M_{wi}\right)^{1/2}} \times \frac{\left(\frac{3 + 20\left(1 - \frac{T}{T_{c}}\right)^{2/3}}{\left(3 + 20\left(1 - \frac{T}{T_{c}}\right)^{2/3}\right)}\right)}{\left(3 + 20\left(1 - \frac{T}{T_{c}}\right)^{2/3}\right)} \geq 0.1W / m.K$$

$$\Delta H_{v}\left(T_{0}\right)\left(\frac{1-\frac{T_{1}}{T_{c}}}{1-\frac{T_{0}}{T_{c}}}\right)^{0.38} \geq 200 kJ / kg$$

• Process constraints

$$f(Z_{v_1}) = 0 = Z_{v_1}^3 - Z_{v_1}^2 + Z_{v_1}(-B^2 + A - B) - AB$$

$$f(Z_{v_2}) = 0 = Z_{v_2}^3 - Z_{v_2}^2 + Z_{v_2}(-B^2 + A - B) - AB$$

$$f(Z_{L_3}) = 0 = Z_{L_3}^3 - Z_{L_3}^2 + Z_{L_3}(-B^2 + A - B) - AB$$

Needed for efficient solution of cubic EoS [4]:

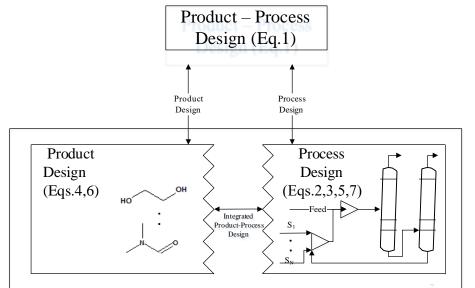
	$f'(Z_{V2}) \ge 0$
$f(Z_{V1}) = 0$	$f''(Z_{V2}) \ge 0$
$f'(Z_{V1}) \ge 0$	$f(Z_{L3}) = 0$
$f''(Z_V) \ge 0$	$f'(Z_{L_3}) \ge 0$
$f(Z_{V2}^{1})=0$	$f''(Z_{L3}) \le 0$

4] Kamath, R.S., Biegler, L.T., Grossmann, I.E., 2010, Comput. Chem. Eng. 34, 2085–2096.

SPEED Simultaneous product and application process design

Refrigerant-cycle design: Step-3 (complete model-2) Process constraints

Compressor $\ln \varphi_{V1} = \ln \varphi_{L1}$ $\ln \varphi_{V2} = \ln \varphi_{L2}$ P_1, T_1 P_2, T_2 $H_{I3}(T_3, P_3) - H_{I4}(T_4, P_4) = 0$ $S_{V2}(T_2, P_2) - S_{V1}(T_1, P_1) = 0$ $P_{1} = P_{4}$ Evaporator Condenser $P_{2} = P_{3}$ $T_{1} = T_{4}$ $P_1 \geq P_0$ $P_2 \leq 0.8 P_c$ P₄, T₄ P₃, T₃ $T_2 \leq 0.8T_c$ **Expansion Vavle** $265.65K \le T_1 \le 280.15K$ $313.15K \le T_3 \le 333.15K$ $\max COP = \frac{H(Z, T, P) - H(Z, T, P)}{H_2(Z_{V2}, T_2, P_2) - H_1(Z_{V1}, T_1, P_1)}$ Objective function


SPEED Case study: Product-process design

Cycle design for each molecules is given by Problem (II)

Results

		r134a	r152a	3,3,3- triFluoro	3,3-diFluoro butene	2,2-diFluoro butane
				propyne		
	Mw	102 g/mol	66 g/mol	94 g/mol	92 g/mol	94.1 g/mol
	Tb	236 K	230 K	242 K	246 K	252 K
	Тс	374 К	366 K	369 K	392 К	389 K
Problem I	Pc	37.32 bar	46.75 bar	38.13 bar	39.27 bar	37.8 bar
	ω	0.33	0.27	0.28	0.14	0.18
	k	0.082 W/m.k	0.097 W/m.k	0.086	0.093	0.092
				W/m.K	W/m.K	W/m.K
	ΔH_v at T _b	26523 J/mol	28562 J/mol	18635 J/mol	21312 J/mol	26991 J/mol
	ODP	0	0	0	0	0
	GWP	1370 (ASHRAE, 2005)	133 (ASHRAE, 2005)	134.6	2.4	0.9
	Atmospheric lifetime	13.4 years (ASHRAE, 2005)	1.5 years (ASHRAE, 2005)	-	-	
	СОР	10.1	12.8	9.5	11.0	11.1

SPEED

Simultaneous Product - Process Design

Eqs. 1, 4 & 6: mixture-blend design

Examples: Formulated and/or blend design

- Liquid formulated products
- Tailor-made blends
- Emulsified products

........

SPEED Tailor-made fuel blends - 1

The main challenge involves how to identify the blends that satisfy the blend target properties with various types of additives **Problems solved**: Tailor made design of gasoline blends, diesel blends, jet-fuel blends and lubricant blends.

Example: Blending gasoline with different additives:
 ✓ impact of fuel consumption on the environment.
 ✓ performances can be retained and improved.

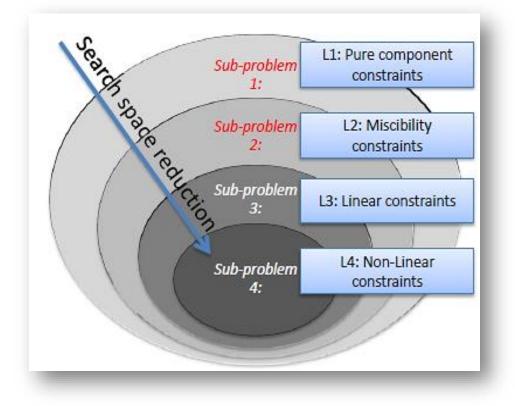
Blend templates help to efficiently narrow down the search space of feasible chemicals to be added and obtain improved tailor-made blends in a faster, reliable and robut manner

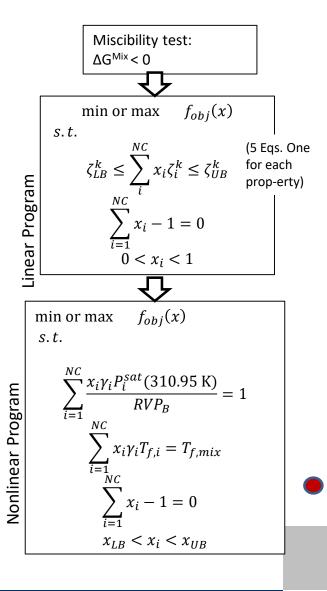
> * To be presented at Session I-2, paper OL5, 16:40 by Sawitree Kalakul

* Collaboration with Texas A&M in Qatar.

SPEED Tailor-made fuels - 2

Task 1 Problem Defintion


- 1.1 Identify product needs
- 1.2 Translate needs into physico-chemical properties
- 1.3 Set target values

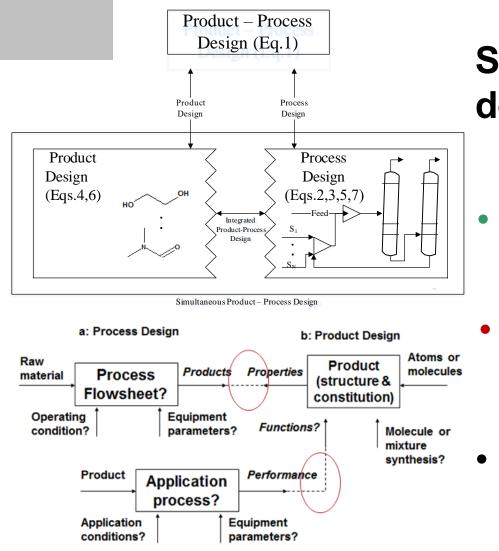

			Data	abase
Need	Target property	Target value		
Ability to be burned	RVP	$45 \le RVP \le 60$		
Engine efficiency	RON	$RON \ge 92$	Model Oil	Additives
	HHV	$HHV \ge 40$	(fixed)	(22 selected)
Consistency of fuel flow	η	$0.30 \le \eta \le 0.60$		
	ρ	$0.720 \leq ho \leq 0.775$		
Flammability	T_f	$T_f \leq 300$		
Toxicity	LC50	$-logLC_{50} < 3.08$		
Stability	ΔG^{mix}	$\Delta G^{mix} < 0$	tailor-made blend	
Environmental aspect	Wt _{O2}	$2 \le W t_{02} \le 20$		
Low oxidation	Choice of chemicals			

SPEED Tailor-made fuels

Task 2 Mixture/blend design

- 2.1 Pure component constraints (HHV, ρ, η, LC50, WtO2)
- 2.2 Miscibility constraint (ΔG^{mix})
- 2.3 Linear constraints (HHV, ρ, η, LC50, WtO2)
- 2.4 Non-linear constraints (RVP, Tf)

SPEED Tailor-made fuels


Task 3 Rank blend candidates according to a selection criterion

Blend	Composition (vol%)			
Blend 1	MI (69), Tetrahydrofuran (11), 2-Methyl Tetrahydrofuran (20)			
Blend 2	MI (67), Acetone (13), 2-Methyl Tetrahydrofuran (20)			
Blend 3	MI (72), Acetone (10), 2-Butanone (18)			
Blend 4	MI (75), 2-Butanone (13), 2-Methyl Tetrahydrofuran (12)			
Blend 5	MI (77), Ethanol (12), 2-Methyl Tetrahydrofuran (11)			

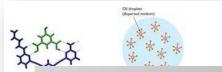
Task 4 Experimental verification

Sample	Density at 15°C (g/[[cm]]^3)		Dynamic Viscosity(mPa.s)		Vapor Pressure at 37.8°C (kPa)	
Target Values	0.720-0.775		0.3-0.6		45 - 60	
	Experimental	Model	Experimental	Model	Experimental	Model
Main Ingredient	0.71	0.73	0.50	0.51	51.0	54.0
Blend 1	0.76	0.76	0.54	0.46	46.2	50.8
Blend 2	0.75	0.74	0.46	0.43	60.4	64.5
Blend 3	0.73	0.74	0.45	0.43	58.9	63.7
Blend 4	0.74	0.73	0.46	0.45	50.1	53.5
Blend 5	0.74	0.74	0.61	0.58	55.1	58.9

SPEED What next?

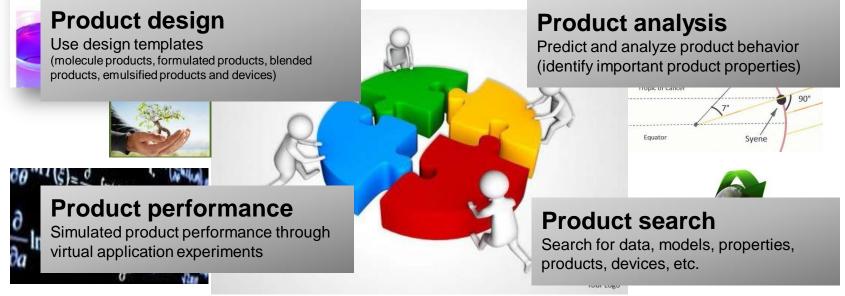
Some interesting developments:

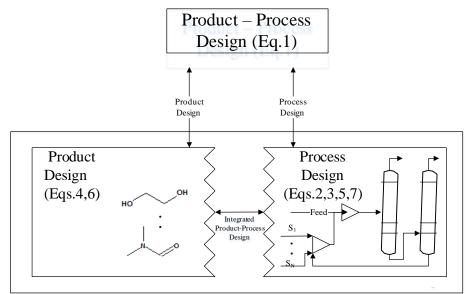
 The chemical product simulator


 Product-process development

- - - -

c: Product Application

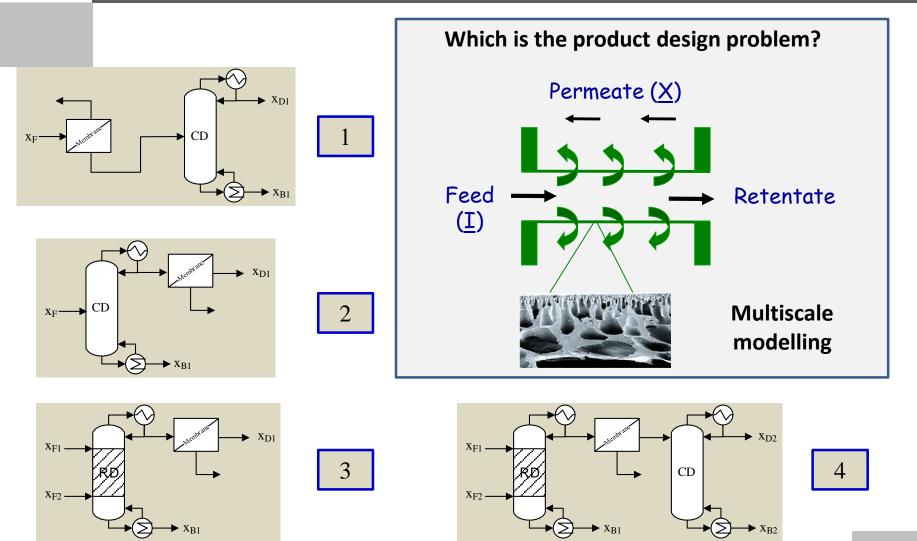

SPEED Chemical product design simulator



There is a need for a product simulator with similar and more useful features than a typical process simulator. Based on available data, models, methods and analysis tools, the first chemical product simulator has been developed: **ProCAPD**

Kalakul et al, "VPPD-Lab: The Chemical Product Simulator", in "Methods and tools for chemical product design", Computer Aided Chemical Engineering, 39, 61-94 (chapter 3), 2017

SPEED

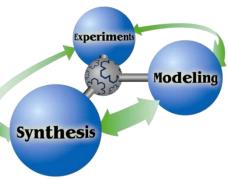


Simultaneous Product - Process Design

Eqs. 1-7: simultaneous product design & process application – decompositionbased solution approach Examples: Molecular design (single molecular products) with process constraints

- Solvents for separations and/or product recovery
- Hybrid process design with membranes
- Process fluids for specific operations
- Reactive agents

SPEED Design of hybrid modules



Close to 50% or more energy reduction compared to original process achievable

SPEED Collaborative effort needed!

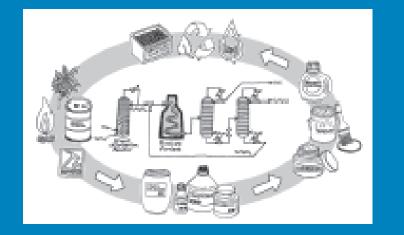
		System	Experiments	Optimized design?
		under - study	Guidance and	ucongin
REAL	REALITY VIRTUAL REALITY Model system		insights for <pre>insights for</pre> insights for	Verify
			el	theoretical solutions
NEAL		Simulations	Optimized design?	

- Solution approaches
 - Integrated multiscale modeling, experiments and synthesis
 - Ability to find predictiveinnovative solutions

Design Problem from 60 Years Ago

- Non-scumming "soap bar" (world's bestselling soap bar) – Launched by Lever Bros (US division of Unilever) in 1955
- Attributes comparable to ordinary soap bars
 - Firmness
 - Lather
 - Rate of wear
 - Slipperiness
 - Mildness
 - No unpleasant odors
 - No "cracking" from wet/dry cycles

Michael Hill M Hill & Associates Mahwah, NJ

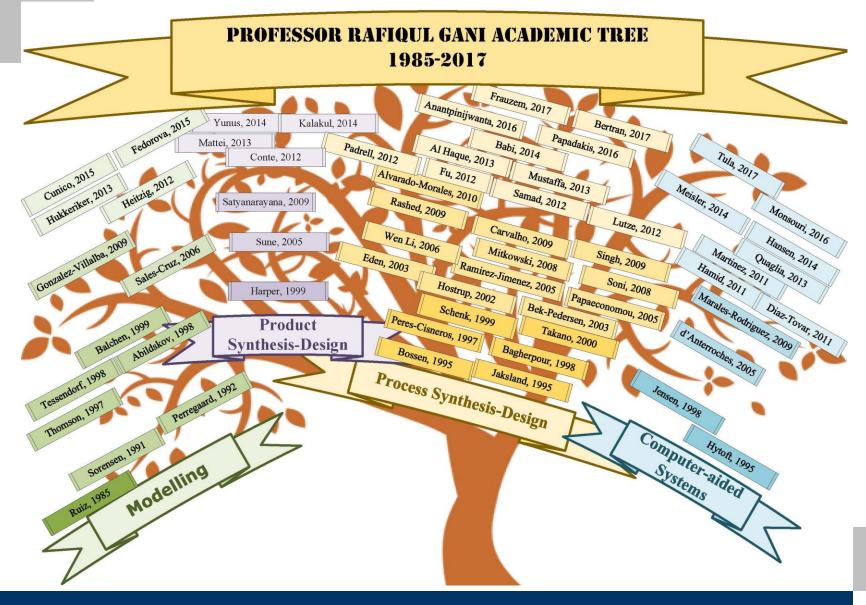

 Processable on ordinary soap bar line: model-based system yet to be developed

SPEED Textbook: Process-Product Design (4th edition)

PRODUCT AND PROCESS DESIGN PRINCIPLES

Synthesis, Analysis and Evaluation

FOURTH EDITION


WARREN D. SEIDER + DANIEL R. LEWIN J.D. SEADER + SOEMANTRI WIDAGDO RAFIQUE GANI + KA MING NG

Published by Wiley

Suitable for BSc, MSc level teaching of

- Product design
- Process design
- Integrated productprocess design

SPEED The academic tree of Prof Rafiqul Gani

