### **Coourse:**

## Process Design Principles & Methods 2017

### **Lecture 1: Introduction**

## **Professor Rafiqul Gani**

## **Course Information**

Schedule: see the course document

**Exam & Grading**: Design project report; oral presentation; 3 takehome exam problems.

**Design project**: Work in groups of 2 members; details will be given later today.

**Consulting**: During the tutorials groups can consult the teacher for questions on the process design project

## Textbook

**Textbook-1**: LT Biegler, IE Grossmann and AW Westerberg, *Systematic Methods of Chemical Process Design*, Prentice Hall, 1997.

**Textbook-2**: PRODUCT AND PROCESS DESIGN PRINCIPLES: Synthesis, Analysis and Evaluation (Seider, Lewin, Seader, Widgado, Gani, Ng), John Wiley & sons, New York, USA, Spring 2016 (4<sup>th</sup> Edition)



#### Chemical process design is about finding a sustainable process that can convert the raw materials to the desired chemical products

Sustainable: Economic, low environmental impact, low waste, efficient operation, correct raw material, .....

The Product Tree

It is important to choose the right product and the corresponding raw *material from* which the product can be made. This also defines the path (process route)

<u>Refined Chemicals & Consumer Products (≈ 30000)</u> Plastics, pharmaceuticals, dyes, solvents, fertilizers, fibres, dispensers, cosmetics.



<u>Intermediate Products (≈ 300)</u> Methanol, vinyl chloride, styrene, urea, formaldehyde, ethylene oxide, acetic acid, acrylonitrile, cyclohexane, acrylic acid

> <u>Basic Products (≈ 20)</u> Ethylene, propene, butadiene, benzene, synthesis-gas, actylene, ammonia, sulfuric acid, sodium hydroxide, chlorine



<u>Raw Materials (≈ 10)</u> Petroleum, natural gas, coal, biomass Rock, salt, phosphate, sulfur, air, water

#### **Development of the chemical product tree**

### TOWARD A GLOBAL AGE ...

The surge of rapid globalization has encompassed the economy, technology and even people's perspective. The 21st century will see the arrival of a new age where the global view is a common requisite for all. We, at Mitsubishi Chemical, based on our dedication to worldwide prosperity, will continue our efforts to contribute to the comprehensive research and development of chemistry.



#### **Product-Raw Material Paths**

#### PETROCHEMISTRY

Utilizing limited natural resource to turn the dreams of mankind into reality Within the site, plants are operating around the clock and various chemical products are being produced. Among the plants, the Ethylene Plant produces the raw materials for other plants such as ethylene and propylene. The Makic Anhydride Plant uses a butane-butylene fraction utilizing the technology developed by Mitsubishi Chemical for the first time in the world. Mitsubishi Chemical has unique technologies not only for the production of high density polyethylene, polypropylene, 2-ethylhexanol (plasticizer of polyvinyl chioride) and various industrial alcohol, but also for pollution prevention. The company aims to maintain the world's top level quality and competitiveness of its products.



Course: Process Design Principles & Methods, L1, PSE for SPEED, Rafiqul Gani

Refined Chemicals & Consumer Products (\$ 30000)

Plastics, pharmaceuticals, dyes, solvents, fertilizers, fibres, dispensers,

**A Scenario for Chemical Process Design** 

- 1. Board of Directors' Design Problem
- 2. Discovery of possible new projects
- 3. Feedback & customer reaction
- 4. Planning & organizational design
- 5. Preliminary (conceptual) process design
- 6. Layout & three dimensional modelling
- 7. Construction
- 8. Startup & commissioning
- 9. Plant Operation
- **10. Debottelnecking**
- **11. Decommissioning**

Course: Process Design Principles & Methods, L1, PSE for SPEED, Rafiqul Gani

Stages in the life of a process !

# Roles of different groups of people in the different stages of the life of a process - I



### Roles of different groups of people in the different stages of the life of a process - II





### **The Synthesis Step**



#### **Example of a Chemical Process & Product**



The production of VCM is usually done from ethylene. In this case the process is carried out in two steps, first reaction with either chlorine or hydrogen chloride in order to produce ethylene dichloride (EDC) and next pyrolysis (cracking) to form VCM. The compounds in the system are Ethylene, EDC, VCM, HCl,  $O_2$ ,  $Cl_2$  and  $H_2O$ . The reactions involved is the process are:

```
Direct chlorination: C_2H_4 + Cl_2 \rightarrow C_2H_4Cl_2
```

```
Oxychlorination: C_2H_4+2HCl+\frac{1}{2}O_2 \rightarrow C_2H_4Cl_2+H_2O
```

```
Pyrolysis (cracking): C_2H_4Cl_2 \rightarrow C_2H_3Cl + HCl
```

The two step process also requires two separation blocks. In the first step (formation of EDC) two different reactions are considered (Direct chlorination and oxychlorination). Oxychlorination produces water in addition to EDC and it also requires a recycle.

## **Aspects of Green Engineering**



### **The Total Picture: Process plus utilities**



#### **Heat Integration & Utilities**

**Mass Integration & Utilities** 

### **The Total Picture: Process plus utilities** plus environmental impact & sustainability



16

#### **Establish goals**

## Propose tests to verify if goals are satisfied Identify starting points Identify the space of design alternatives

Note: these are open-ended problems having many solutions! The specific solution obtained by one depends on the specific decisions made by the designers.

Course: Process Design Principles & Methods, L1, PSE for SPEED, Rafiqul Gani

17

**Establish goals** 

Make profit, maximize profit, minimize cost, ensure safety, ensure low environmental impact, easy to control, flexible , .....

**Propose tests to verify if goals are satisfied** 

**Identify starting points** 

**Identify the space of design alternatives** 

#### **Establish goals**

Propose tests to verify if goals are satisfied

Criteria for success – profit model [net present value (economic evaluation) based on a cost estimation method]; safety test; environment impact test; .....

**Identify starting points** 

**Identify the space of design alternatives** 

**Establish goals** 

**Propose tests to verify if goals are satisfied** 

**Identify starting points** 

What is the starting point (information) – do we already have a process flowsheet plus mass & energy balance completed or only a flowsheet or nothing except that X-amount of product is to be made from Y-amount of raw material

**Identify the space of design alternatives** 

**Establish goals** 

Propose tests to verify if goals are satisfied

**Identify starting points** 

**Identify the space of design alternatives** 

**Design related decisions** 

**Identify them** 

**Identify alternatives** 

**Consider base case design** 

## How much product must be produced?

- Market demand
- Raw material availability
- Cost of size of equipments
  - Batch process (residence time versus equipment size versus production rate)
  - Continuous process (residence time versus equipment size versus production rate)

How to solve the process design problem (refined definition)?

- Many ways to solve the problem
- We will teach you to do this systematically by performing a predefined set of tasks (work-flow)
- The tasks are arranged in a specific sequence
  - Within each task, a set of decisions need to be made
  - Calculations are made to verify the decisions
  - Data generated in one task is used in the subsequent tasks

#### **Design Tasks 1-6**

- •Task 1: Collect information on the product
- Task 2: Collect information on the process; alternative paths to convert other raw materials to the desired product
- Task 3: Generate (and/or select) preliminary process flowsheet
- Task 4: Decide process conditions (such as reaction conversion, separation factor, purge, etc.) and perform a simple mass balance on the selected flowsheet
- Task 5: Based on the results from above, set temperatures and pressures on the process flowsheet
- Task 6: Based on the results from above, perform a simple mass & energy balance

#### **Design Tasks 6-12**

•**Task 7**: Perform detailed process simulation – convert each of the simple models with the more rigorous option, one at a time, until all simple models have been converted.

• Task 8: Based on the simulation results from task 7, perform equipment sizing and costing calculations

• Task 9: Based on the results from tasks 1-8, perform an economic evaluation, using the current design as the "base case"

• Task 10: Investigate if opportunities for heat and mass transfer exist. If yes, apply them and check by how much the cost of operation can be further reduced? (or Task 11)

•Task 11: Perform environmental impact analysis (or Task 12)

• Task 12: Investigate how the current design can be further improved; formulate process optimization problems (or Task 10)

What can we produce from Ethylene that can be sold profitably?

Task 1: Identify the product & collect product information (*see also chapter 1 of textbook*)

What can we produce from Ethylene that can be sold profitably?

### **Task 1: a) One alternative product – Ethanol**

b) Collect information about ethanol -

Formula: C2H5OH;

Properties: Tb = 351.44 K; Tm = 159.05 K; Miscible with water; used as solvent; .....

What can we produce from Ethylene that can be sold profitably?

**Task 2:** Collect information on process to convert raw material (ethanol) to product (ethanol) – *see also chapters 1-2 of textbook* 

Questions

How pure is ethylene source? What are the consequences of impurities? How much ethanol to make and at what purity? What information on the reaction is available? Any known process flowsheets?

What can we produce from Ethylene that can be sold profitably?

**One alternative – Ethanol** 

Questions (task 2) How pure is ethylene source? 96%EL, 3%PL, 1%M What are the consequences of impurities? By-products (DEE, IPA, W, CA) & purge? How much ethanol to make and at what purity? Ethanol at 190 proof (85.44% mole) What is the next step? Find out about reactions

#### **Task2:** Collect process information



Properties:  $M_w$ , density,  $T_m$ ,  $T_b$ ,  $H_{vap}$ ,  $P_{vap}(T)$ ,  $T_c$ ,  $P_c$ 

What can we produce from Ethylene that can be sold profitably?

**One alternative – Ethanol** 

Questions

How pure is ethylene source? 96%EL, 3%PL, 1%M What are the consequences of impurities? By-products (DEE, IPA, W, CA) & purge? How much ethanol to make and at what purity? 150000m3/y at 190 proof (85.44% mole) of ethanol What is the next step?

Make a quick cost evaluation & establish the flowsheet requirements (see section 2.4.1 of textbook) - \$72 - \$82 million/y (profit), but operating cost/y and annualized capital cost/y needs to be subtracted.

Case Study: Utilize 75 million kg/y of excess ethylene to produce 150000 m3/y at 85.44%mole purity ethanol

Task 3: Generate a process flowsheet (chapter 2)

Purge Stream 5. Splitter Absorber Water Water Feed Ethylene Feed Absorber 1. Mixer 2. Reactor 3. Flash 6. Mixer œ Ethanol Deethering Column Product ~ 9 Dewatering Column . Finishing Column Wastewater Wastewater FIGURE 3.1 Ethanol flowsheet.

Next: Task 4 (perform a simple mass balance)

#### Task 4: Perform a simple mass balance – chapter 3



Redraw flowsheet for MB-model: Redrawn flowsheetUse only mixers, reactors, dividers and splitters (component)!Course: Process Design Principles & Methods, L1, PSE for SPEED, Rafiqul Gani33

# Task 4: Perform a simple mass balance - chapter 3 plus notes

Use PROII or generate your own mass balance model



34

# Task 4: Perform a simple mass balance – chapter 3 plus notes

#### Use PROII or generate your own mass balance model

| ······································ |                       |              |               |                 |           |              |                  |          |           |          |          |                 |                 |                  |          |          |          |          |         |          |
|----------------------------------------|-----------------------|--------------|---------------|-----------------|-----------|--------------|------------------|----------|-----------|----------|----------|-----------------|-----------------|------------------|----------|----------|----------|----------|---------|----------|
| Siean Nane                             |                       | 801          | 802           | 81              | 811       | 8Z           | 831              | 832      | 841       | 803      | 84Z      | 851             | 85Z             | 86               | 871      | 87Z      | 881      | 88Z      | 891     | 892      |
| Steam Description                      |                       |              |               |                 |           |              |                  |          |           |          |          |                 |                 |                  |          |          |          |          |         |          |
| Phase                                  |                       | Vapor        | Liquid        | Mixed           | Vapor     | Mixed        | Vapor            | Liquid   | Vapor     | Uquid    | Liquid   | Vapor           | Vapor           | Uquid            | Mixed    | Liquid   | Vapor    | Uquid    | Uquid   | Mixed    |
| Temperature                            | к                     | <b>10111</b> | <b>30.000</b> | 295.0452        | 50.000    | <b>30.00</b> | 30.000           | 100.0000 | 310.000   | 30.000   | 1.000    | 310.000         | 310.000         | 84.2571          | 310.000  | 1.000    | 310.000  | 328.2792 | 100.000 | 372.3282 |
| Pressure                               | BAR                   | 1.000        | 1.000         | 1.000           | 1.000     | 1.000        | 1.000            | 1.000    | 1.000     | 1.000    | 1.000    | 1.000           | 1.000           | 1.000            | 1.000    | 1.000    | 1.000    | 1.000    | 1.000   | 1.000    |
| Enhalpy                                | M <sup>e</sup> Kaya R | 0.9573       | 1.9528        | 13,7051         | 81,2619   | 15.1154      | 12,3950          | -10.4555 | 10.989+   | 00764    | -2.9907  | 10.5166         | 0.0528          | -13.4495         | 1,9665   | -13.4911 | 1.0734   | 0.8821   | -1,6633 | 2.580+   |
| Note outer Weight                      |                       | 28.3547      | 18.0150       | 25 <i>5</i> 118 | 26.5429   | 26.5429      | 28,6348          | 21.9402  | 22,5307   | 18.0150  | 26,2922  | 28 <i>5</i> 307 | 28 <i>5</i> 307 | ZZ.6331          | 34.5992  | 18,0096  | 35.5314  | 339012   | 42.0014 | 19.2366  |
| Note Fraction Vapor                    |                       | 1.000        | 0.000         | 0.7055          | 1.000     | 0.7049       | 1.000            | 0.0000   | 1.000     | 0.000    | 0.000    | 1.000           | 1.000           | 0.000            | 0.367    | 0.000    | 1.000    | 0.000    | 0.000   | 0.2961   |
| Note Fraction Liquid                   |                       | 0.000        | 1.000         | 0.2945          | 0.000     | 0.2961       | 0.000            | 1.000    | 0.000     | 1.000    | 1.000    | 0.000           | 0.000           | 1.000            | 0.5353   | 1.000    | 0.000    | 1.000    | 1.000   | 0.1019   |
| Rate                                   | KOHIO L/H R           | 100.000      | 771.800       | 2533.177        | 2441.076  | 2441.076     | 1678.305         | 762,771  | 1533.353  | 37.7.47  | 135,652  | 1572.481        | 7.902           | 856.44D          | 252,199  | 6+6.2+0  | 32,296   | 163.304  | 105.069 | 58Z6     |
|                                        |                       |              |               |                 |           |              |                  |          |           |          |          |                 |                 |                  |          |          |          |          |         |          |
| Fluid Rales                            | KO-MOL/HR             |              |               |                 |           |              |                  |          |           |          |          |                 |                 |                  |          |          |          |          |         |          |
| METHANE                                |                       | 1.000        | 0.0000        | 200,8031        | 200,8031  | 200,9031     | 199,9998         | 0,9032   | 199,9998  | 0.000    | 0.000    | 198,9998        | 1.000           | 0.8032           | 0,9132   | 0.000    | 0.8032   | 0.000    | 0.0000  | 0.000    |
| ETHYLENE                               |                       | 96.000       | 0.000         | 1222.2995       | 1198,6458 | 1198.6458    | 1120,6950        | 17.9797  | 1155,2721 | 0.000    | Z4.7940  | 1150.0927       | 5,7794          | 42.7737          | 42.7737  | 0.000    | 42.7737  | 0.000    | 0.0000  | 0.000    |
| PROPENE                                |                       | 3000         | 0.000         | 262.5943        | 295.7141  | 296.7141     | Z48 <i>5</i> 775 | 18,1366  | ZZ39624   | 0.000    | 24,6092  | ZZZ 2425        | 1.1198          | 42.7 <b>4</b> 57 | 42.7 457 | 0.000    | 42.7 457 | 0.000    | 0.0000  | 0.000    |
| EETHER                                 |                       | 0.000        | 0.000         | Z.4110          | Z.4110    | Z.4Z31       | 1,2116           | 1,2116   | 0.2908    | 0.000    | 0.9208   | 0.2253          | 0.0015          | Z.13Z3           | Z.13Z3   | 0.000    | Z.1217   | 0.0107   | 0.0106  | 0.0001   |
| H20                                    |                       | 0.000        | 771.3000      | 7719409         | 679.2400  | 679,2521     | 36.7120          | 643.1401 | 0.1+15    | 37.7 470 | 7+3175   | 0.1408          | 0.0007          | 717.4576         | 717458   | 645.7119 | 0.000    | 717458   | 15,3005 | 56.4453  |
| ETHANOL                                |                       | 0.000        | 0.000         | 0.9902          | 90,7309   | 90,7967      | 10.9816          | 79,7751  | 0.1098    | 0.000    | 10.87 17 | 0.1093          | 0.0005          | 90.6462          | 90,1936  | 0.4532   | 0.4510   | 29.7 425 | 39,6529 | 0.0397   |
| IPROPHOL                               |                       | 0.000        | 0.000         | 0.0010          | 1.881Z    | 1.5812       | 0.1961           | 1.7250   | 0.0010    | 0.000    | 0.1551   | 0.0010          | 0.000           | 123312           | 1,3049   | 0.0752   | 0.0000   | 1,2049   | 0.1051  | 1,6968   |
|                                        |                       |              |               |                 |           |              |                  |          |           |          |          |                 |                 |                  |          |          |          |          |         |          |
|                                        |                       |              |               |                 |           |              |                  |          |           |          |          |                 |                 |                  |          |          |          |          |         |          |

# Note: Simulation (simulator) is used mainly to verify design decisons. It does not do process design!



**Task 6:** With all temperatures and pressures known, perform mass and energy balance for the simple flowsheet (see also chapter 3 of textbook)

![](_page_36_Figure_1.jpeg)

#### Mass and Energy balances for Ethanol Process Flowsheet

|                    | μ <sub>{11</sub> | μ <sub>02</sub> | μ <sub>i</sub> | μ <sub>2</sub>  | $\mu_{31}$ | μ <sub>32</sub>       | $\mu_{41}$      | $\mu_{42}$      | μ <sub>03</sub> |
|--------------------|------------------|-----------------|----------------|-----------------|------------|-----------------------|-----------------|-----------------|-----------------|
| Methane (gmol/s)   | 1                | 0               | 200            | 200             | 199.2      | 0.8                   | 199.2           | 8.0             | 0               |
| Ethylene           | 96               | 0               | 1289           | 1198.77         | 1180.78    | 17.98                 | 1155.99         | 24.796          | 0               |
| Propylene          | 3                | 0               | 268.6          | 266.71          | 248.58     | 18.136                | 223.97          | 24.609          | 0               |
| Diethyl Ether      | 0                | 0               | 0              | 2,421           | 1.210      | 1.2108                | 0.2906          | 0.9202          | <b>0</b> .      |
| Ethanol            | 0                | 0               | 0.56           | 90.79           | 10.98      | 79.80                 | 0.1098          | 10.87           | ···· <b>0</b>   |
| Isopropanol        | 0                | 0               | 0              | 1.8802          | 0.156      | 1.724                 | 0.001018        | 0.1550          | 0               |
| Water              | 0                | 771.797         | 773.4          | 680.72          | 36.75      | 643.97                | 1.610           | 72.896          | 37.747          |
| Total              | 100              | 771.797         | 2531.56        | 2441.31         | 1677.68    | 763.62                | 1581.177        | 134.25          | 37.747          |
| → Temperature, K   | 300              | 300             | 590            | 590             | 393        | 393                   | 381.57          | 338.7           | 310             |
| -> Pressure, bar   | · · · · · ·      | 1               | 69             | 69              | 68.5       | 68.5                  | 68              | 68              | 68              |
| Vap. Frac          | 1                | 0               | 1              | 1               | . 1        | 0                     | 1               | 0               | 0               |
| > Enthalpy, kcal/s | 1198.85          | 52097.04 -      | -21683.63 -    | -22689.24       | 11515.18   | -47920.28             | 13439.75        | -5324.42        | -2544.97        |
|                    | μ <sub>51</sub>  | μ <sub>52</sub> | μ <sub>6</sub> | μ <sub>71</sub> |            | $\mu_{72}$ $\mu_{81}$ | μ <sub>82</sub> | μ <sub>91</sub> | μ <sub>92</sub> |
| Methane (gmol/s)   | 198.204          | 0.996           | 0.8            | 0.8             |            | 0 0.8                 | 0               | 0               | 0               |
| Ethylene           | 1150.21          | 5.780           | 42.778         | 42.778          |            | 0 42.7781             | 0               | 0               | 0               |
| Propylene          | 222.85           | 1.1198          | 42.746         | 42.746          |            | 0 42.7466             | 0               |                 | 0               |
| Diethyl Ether      | 0.2891           | 0.00145         | 2.131          | 2,131           |            | 0 2.1205              | 0.01065         | 0.01065         | 0               |
| Ethanol            | 0.1093           | 0.000549        | 90.680         | 90.226          | 0.45       | 34 0.451              | 89.775          | 89.3267         | 0.4489          |
| Isopropanol        | 0.001013         | 5.09323E-06     | 1.879          | 1.804           | 0.0        | 75 0                  | 1.804           | 0.1046          | 1.6994          |
| Water              | 1.6024           | 0.00805         | 716.867        | 71.68           | 645.       | 18 0                  | 71.686          | 15.1490         | 56.537          |
| Total              | 1573.27          | 7.9058          | 897.882        | 252.173         | 645.       | 70 88.896             | 163.277         | 104.591         | 58.686          |
| Temperature, K     | 381.57           | 381.57          | 372            | 310             | 4          | 80 310                | 418             | 350             | 383             |
| Pressure, bar      | 67.5             | 67.5            | 68             | 17.56           | 18.        | 06 10.7               | 11.2            | 1               | 1.5             |
| Vap. Frac          | 1                | 1               | 0              | Ó               |            | 0 1                   | 0               | 0               | Ó Ó             |
| Enthalpy, kcal/s   | 13372.55         | 67.197          | -53244.70      | -10436.14       | -42629.    | 37 590.10             | -10576.78       | -6787.79        | -3930.30        |

**Task 7:** Replace each of the component stream calculators (splitters) with their corresponding rigorous models (one at a time) and perform the mass and energy balance for the total flowsheet

![](_page_38_Figure_1.jpeg)

Course: Process Design Principles & Methods, L1, PSE for SPEED, Rafiqul Gani

#### **Task 8: Perform equipment sizing and costing calculations** for all equipments in the process flowsheet (Chapter 4)

![](_page_39_Figure_1.jpeg)

Course: Process Design Principles & Methods, L1, PSE for SPEED, Rafiqul Gani

#### **Task 9: Perform economic evaluation for designed process** (Chapters 4-5 plus notes) – this will be the base case design

![](_page_40_Figure_1.jpeg)

Course: Process Design Principles & Methods, L1, PSE for SPEED, Rafiqul Gani

## **Task 10: Investigate opportunities for heat and mass integration (chapters 10 & 16 plus notes)**

![](_page_41_Figure_1.jpeg)

Course: Process Design Principles & Methods, L1, PSE for SPEED, Rafiqul Gani

## **Task 11: Perform environmental impact analysis (supplied notes)**

![](_page_42_Figure_1.jpeg)

Course: Process Design Principles & Methods, L1, PSE for SPEED, Rafiqul Gani

Task 12: Investigate how to improve the base case design – formulate process optimization problems (chapter 9 plus notes)

![](_page_43_Figure_1.jpeg)

## Important Issues to Note in Chemical Process Design

- 1. Process design is about making design decisions (which decisions, when & how) & verifying if they are acceptable.
- 2. Process simulators should not be used for blind trial and error but for fast evaluation of design decisions
- **3.** Process design is iterative by nature but if a systematic procedure is followed, better results can be obtained faster
- 4. Use everything (knowledge) that you have learned from other courses

## **Course: Tutorials**

- 1. First week
  - get familiar with software (Process simulator: PROII) & (ICAS: Database & utility calculations)
  - start with process design project (tasks 1-2); Friday, 10 February finish task-3
- 2. Design project report needs to be submitted in terms of tasks at different stages of the course (only for checking the design not for grading)
- **3.** Work on design projects can be done in groups of 3 with one report per group but for the 3 extra exam problems, the reports must be individually submitted