

Modelling tools & applications

ICAS-MoT

Rafiqul Gani

PSE for SPEED Skyttemosen 6, DK-3450 Allerod, Denmark rgani2018@gmail.com

www.pseforspeed.com

Overview

Modelling concept (summary)
Tool for model analysis & solution (MoT)
Examples with MoT

Modelling concept - 1

For a given modelling task, generate (create) the mathematical model; analyze the model; solve the model; create a model object & finally use

Modelling concept - 2

For a given modelling task, generate (create) the mathematical model; analyze the model; solve the model; create a model object & finally use

Tool for model generation: ModDev -1 Describe balance volume (control shell) & connection to surroundings; retrieve equations from model library; export model to MoT

Tool for model generation: ModDev -2 Describe balance volume (control shell) & connection to surroundings; retrieve equations from model library; export model to MoT

Tool for model generation: ModDev -3 Describe balance volume (control shell) & connection to surroundings; retrieve equations from model library; export model to MoT

Match problem description with Reference Models

Can be transferred into balance equations for other extensive quantities by symbolic manipulation

Retrieve matched models otherwise build new models

9

PSE for SPEED for model generation: ModDev - example

STREAM CONNECTION OBJECT Name: 3 Models for quantities: Energy (enthalpy): $H_3 = @FUNC_E(2,f_{3[]},T_3,P_3)$ Models for the "from"-connection: (equilibrium) Energy connection: $T_3 = T_{flash}$ Momentum connection: $P_3 = P_{flash}$

SHELL OBJECT

Name: *flash* Assumed phase condition: *Calculate* (*VL*) Equilibrium model: $0 = f_{2i}/ft_2 - K_{flash} * f_{3i}/ft_3$, @KEQ(T_{flash}, P_{flash} , $f_{2[]}, f_{3[]}, \#K_{flash}$), no accumulation, include mass & energy balance

SHELL CONNECTION OBJECT Name: *heater* Connection models: Energy connection: $Q_{heater} = Q_{flash}$

PSE for model generation: ModDev - example

```
Tl = Tout
Pl = Pout
Ttank=Tout
Tv = Tl
Pv = Pl
ntot = sum_i(n[i])
zTank[i] = n[i]/ntot
```

Model equations written in ASCII-text is exported to MoT

```
#find k values
    Psat[i] = (10<sup>^</sup>(DB AntoineA[i] - DB_AntoineB[i]/(Tout-273.15+DB_AntoineC[i]) ))/760
    K[i] = Psat[i]/Pout
    x[i] = zTank[i] / (1+phi*(K[i]-1))
    y[i] = x[i] *K[i]
                                   #get the densities
    #get the enthalpies
    #hVap[i] = (Avap[i]*(1-(Tout/'
                                   #dL[i] = A105[i]/B105[i]^(1+(1-Ttank/C105[i])^D105[i])
                                   dL[i] = ADippr101[i]/BDippr101[i]^(1+(1-Ttank/CDippr101[i])^DDippr101[i])
    #hV[i]=(((((E[i]*0.2*Tout+D[i]
    #hVr[i]=(((((E[i]*0.2*Tref+D[:
    #hL[i] = (((((E[i]*0.2*Tout+D] DenL = 1 / sum i( x[i]/dL[i] )
    #hLr[i] = (((((E[i]*0.2*Tref+I DenV = Pout/(0.08314*Tout)
                                   #rachford rice
                                   0 = ntot*(1-phi)/DenL + ntot*phi/DenV - Vol
                                   0 = sum i( zTank[i]*(1-K[i]) / (1 + phi*(K[i]-1)) )
Note: all the
                                   Level = ntot*(1-phi)/(Area*DenL)
                                   L = ValveL*Level
model
                                   V = ValveV*(Pout-Pmin)
                                   Hv = sum i((hV[i]-hVr[i]+hVap[i])*y[i])
                                   Hl = sum i( (hL[i]-hLr[i])*x[i] )
equations are
                                   0 = (Hl*ntot*(1-phi) + Hv*ntot*phi - Htank)/1000
not shown here
                                   #update holdups
                                   dndt[i] = F^{*}z[i] - L^{*}x[i] - V^{*}y[i]
                                   dHtankdt = Hf*F - Hl*L - Hv*V + q
```

Tool for model analysis & solution: MoT

🞽 MoT		
File Edit View Window Help	Translated form of t	he model
Model Definition Wiew Original Model View Translated Model Modify Model Variable Analysis Classify Variables Define Relationships Show Equation and Va Set Variable Value Model Def	 hLFeed[i] = (((([E[i]*0.2*Tfeed+D[i]*0.25)*Tfeed+C[i]/3.0)*T Hv = sum_i((hV[i]-hVr[i])*y[i]) HI = sum_i((hL[i]-hLr[i])*x[i]) Hf = sum_i((hLFeed[i]-hLr[i])*z[i]) ntot = sum_i(n[i]) zTank[i] = n[i]/ntot dL[i] = A105[i]/B105[i]^(1+(1-Ttank/C105[i])^D105[i]) DenL = sum_i(x[i]*dL[i]) DenV = Pout/(0.08314*Tout) O = ntot*(1-phi)/DenL + ntot*phi/DenV - Vol 0 = sum_i(zTank[i]*(1-K[i]) / (1 + phi*(K[i]-1))) 0 = HI*ntot*(1-phi) + Hv*ntot*phi - Htank Level = ntot*(1-phi)/(Area*DenL) L = ValveL*Level V = ValveV*(Pout-Pmin) dndt[i] = F*z[i]-L*x[i]-V*y[i] dHtankdt = Hf*F - HI*L - Hv*V + q 	feed+B[i]*0.5)*Tfeed+A[i])*Tfeed)/1 Library Explicit Implicit ODE
==> Translator says: Model imp Modelling Testbed ver. 0.1 Init Complete	oorted succesfully. .ocal Variable View) Variable Chart Trace /	
Heady	Model: 1 JEQ's: 18 JUnknown: U JU	/eg. of Freedom: 3 Y: U dY/dt: U 🥥 ⊖dr/suit = 12·02
Microsoft Visual C++ Runtime	MoT	≈7 ⁻ ∎ ₩√(-12.02

Tool for model analysis & solution: MoT

Eq. No.	Equation	Numberof			
		equations			
1	$\ln q_i = b_n (Z - 1) - \ln(Z - B) - A/B (2a_n^{0.5} - b_n) \ln(1 + B/Z) \qquad i = 1, NC$	NC			
2	$a_{n} = (\alpha_{n}^{0.5} \Gamma_{n} / P_{n}^{0.5}) / \sum_{i} (x_{i} \alpha_{j}^{0.5} \Gamma_{n} / P_{n}^{0.5}) \qquad i=1, NC$	MC			
3	$b_n = (T_n/P_n)/\sum_j (x_j, T_q/P_q) \qquad i=1, NC$	MC			
4	$Z^{2} - Z^{2} + Z(A - B - B^{2}) - AB = 0$	1			
5	$A = aP(RI)^2$	1			
6	B = bP(RI)	1			
7	$a = \sum_{i} x_i \sum_{j} x_j a_{ij} \qquad i=1, NC; j=1, NC$	1			
8	$b = \sum_{i} x_i x_j b_{ij} \qquad i=1, NC; j=1, NC$	1			
9	$a_{ij} = (a_i a_j)^{k} (1 - k_{ij})$ $i = 1, NC_i j = 1, NC$	MC*MC			
10	$b_{ij} = (b_i + b_j)/2$ $i=1, NC; j=1, NC$	MC*MC			
11	$a_i = \psi_A \alpha_i (T) (R^2 T_n^2 / P_n) \qquad i=1, NC$	NC			
12	$b_i = \psi_B(RT_n/P_n) \qquad i=1, NC$	MC			
13	$\alpha_{i}(T) = [1 + m_{i}(1 - T_{h}^{0.5})]^{2} \qquad i = 1, NC$	MC			
14	$m_i = 0.48 \pm 1.574 \omega_i - 0.176 \omega_i^2$ $i=1, NC$	MC			
μs	$T_{ib} = T/T_{ib} \qquad i=1, NC$	MC			
Total number of equations = 5 + 8NC + 2NC*NC					
Total number of variables = 10 [T, P, R, ψ_{A} , ψ_{B} , a, b, A, B, Z] + 12NC [x, T _o , P _o , a) T _B α					
$\underline{m} \ \underline{a}, \ \underline{b}, \ \underline{a}, \ \underline{b}, \ \underline{p}] + 3NC^*NC[\underline{a}, \ \underline{b}, \ \underline{k}] = 10 + 12NC + 3NC^*NC$					

Table 2d: Incidence matrix of SRK EOS property model equations.

T	Unknown Variables														
Eq.	Tr	т	α	b	<u>a</u>	<u>b</u>	<u>a</u>	а	Ь	В	Α	Ζ	<u>b</u> _y	₫y	Ø
15	*														
14		*													
13	*	*	*												
12				*											
11			*		*										
10				*		*									
9					*		*								
7							*	*							
8						*			*						
6									*	*					
5								*			*				
4 ¹										*	*	*			
3													*		
2			*											*	
1										*	*	*	*	*	*

¹: requires the solution of a cubic equation in Z

Tool for model analysis & solution: MoT

	Brook	Equation	Doputt
		C=VON	n n n n n n n n n n n n n n n n n n n
		E=VEM	0 0
Solver Options			25
📋 Solution Options	4	dV=Fin-Fout	0
🔤 Variable Bounds	5 6	option2=qGmax	0.02
Stepwise Model Solution	6	qO2lim=qO2max	0.00657
	7	Gm=G/MwG	0
	8	Em=EMWE	0
Misc	9	qGoxlim=qO2lim/kog	0.00285652
👘 📋 Variable Chart Trace	10	EPR=Em*kla*air	0
📕 Show Solution	11	option1=qG0m+alpha*(Gm-G0m)	0.001325
	12	qEmpot=gamma*Em	0
I	13	option4=qGoxlim	0.00285652
I	14	qGm=min(option1,option2)	0.001325
I	15	option5=qEmpot	0
I	16	qG=MwG*qGm	0.2385
I	17	option3=qGm	0.001325
I	18	dVG=-qG*VX+Gin*Fin-G*Fout	27.615
I	19	qGr=min(option3,option4)	
I	20	qGf=max(qGm-qGr,0)	
I	21	option7=(qO2lim-kog*qGr)/koe	
I	22	qEoxlim=max(option7,0)	
I	23	option6=qEoxlim	
I	24	qEr=min(option5,option6)	
I	25	qEm=-qEr+keg*qGf	
	26	qCO2=kc1*qGr+kc2*qGf+kc3*qEr	
		mum=YGr*qGr+YGt*qGf+YEr*qEr	
ng Defi 📲 🛱 Sol 📲 🛱 Opti	29	dQspec=(dQGr*qGr+dQGf*qGf+dQEr*qEr)/3600	

0.001325 option3 option4 0.00285652173913

Status λ Variable View λ Local Variable View \bigwedge Variable Chart Trace j

qGr

L E L MI

Tool for model analysis & solution: MoT Select the appropriate solver options

Verify Model Solution Options						
Overall Solution Selection	Algebraic Options Dynamic Options Optimizer Options					
Function Evaluation Unly Dynamic Solution	Dynamic Solver BDF Bunge-Kutta (5th order)	Integration Options Forward Backward				
Model Ordering Options		Forward then backward Backward then forward				
Ordered Partitioned and Ordered	Number of time 300 steps	Generate eigenvalue repo				
	Model scaling 1	Hun to steady state Steady state solution				
Specify multiple runs	Global error control (eps)	Criteria 1e-006				
Solve Abort						

Use of MoT model-objects

- Run MoT models on a stand-alone basis
- Run MoT models from a simulator (export MoT models to ICAS or other simulation engines)
- Run Mot models from external software environments (for example, EXCEL)
- Create customized simulator!

Modelling exercise – MoT

Run MoT model objects from EXCEL

Note: It is necessary to first execute ComMOT.exe and then open the supplied EXCEL-macro (MoT_Model_Interface.xls)