

Lectures 10: Modelling case studies and additional topics

Rafiqul Gani

PSE for SPEED Skyttemosen 6, DK-3450 Allerod, Denmark rgani2018@gmail.com

www.pseforspeed.com

Overview

- Model decomposition
- Case studies
- Additional topics
 - Data acquisition & analysis
 - Process modelling for control & diagnosis
 - Modelling of discrete event systems
 - Modelling of hybrid systems

Model Decomposition

General model-based	problem definition	
Fobj = min { $C^{T}\underline{Y}$ + f($\underline{x}, \underline{y}, \underline{u}, \underline{d}, \underline{\theta}$)	$+ S_e + S_i + S_s + H_c + H_p$	(1)
$P = P(\underline{f}, \underline{x}, \underline{y}, \underline{d}, \underline{u}, \underline{\theta})$	Process*/product model	(2)
$0 = \mathbf{h}_1(\underline{\mathbf{x}}, \underline{\mathbf{y}})$	Process/product constrain	nts (3)
$0 \ge g_1(\underline{x}, \underline{u}, \underline{d})$	- "Other" (selection)	(4a)
$0 \ge g_2(\underline{y})$	constraints	(4b)
$\mathbf{B} \mathbf{x} + \mathbf{C}^{T} \mathbf{Y} \ge \mathbf{D}$	Alternatives (molecules;)	unit
— —	flowsheets:)	(5)

Solution approaches

Solve all Eqs. (1-5) simultaneously
Solve 4b, 2, check 3, check 4a, check 5, calc. 1

Solve 4b, 2, check 3, check 4a, check 5, calc. 1

- Enumerate sets of <u>Y</u> that satisfy 4b
- Given \underline{Y} , \underline{u} , \underline{d} , $\underline{\theta}$, solve eq. 2 for \underline{x} for all sets of \underline{Y}
- Given \underline{x} , \underline{Y} , check 3, then 4a, then 5 for remaining sets of \underline{Y} to obtain the set of feasible solutions
- For each feasible solution, calc. FOBJ and find the optimal

Manage the complexity by decomposition: example

	$\min 2x_1 + 3x_2 + 1.5y_1 + 2y_2 - 0.5y_3$	IV	(1)
Objective function	sf		
	$x_1^2 + y_1 = 1.25$		(2)
Process model	$x_2^{1s} + 1.5y_2 = 3.0$		(3)
Dreeses	$x_1 + y_1 \le 1.60$		(4)
Process constraints	$1.333x_2 + y_2 \le 3.00$		(5)
Floweboot	$-y_1 - y_2 + y_3 \le 0$		(6)
constraints	$y_{1}y_{2} = 1$	I	(7)
Variable bounds	$x_1, x_2 \ge 0$		(8)
	$y_1, y_2, y_3 = \{0,1\}$		(9)

Solution strategy: *Solve I*: Y1 = 1, Y2 = 1, Y3 =0; Y1= 1, Y2= 1, Y3 = 1 (only two feasible sets) *Solve II:* X1 = 0.5; X2 = 0.544 (for both sets of Y) Solve III: Eq. 4 & Eq. 5 are satisfied for both sets of Y and the calculated values of X *Solve IV:* Eq 1 = 6.132 for set 1; = 5.632 for set 2 Global optimal solution: set 2 (X1=0.5, X2=0.544, $Y_{1=1}, Y_{2=1}, Y_{3=1})$

PSEfor

Find solvent or membrane, flowsheet & optimal design

Lectures 10: Advanced Computer Aided Modelling

General model-based problem solution Find solvent or membrane, flowsheet & optimal design

Lectures 10: Advanced Computer Aided Modelling

COMPRESSOR

$$0 = C_1 (Y_1 \cdot A_1 + \theta_1 \cdot A_2)$$
$$0 = C_2 (Y_2 \cdot A_2 - \theta_2 \cdot X_1)$$
$$0 = C_1 \cdot X_2 + \theta_1 \cdot Y_2 - A_1$$

 $0 = C \cdot (V \cdot A \cdot + A \cdot / Y_2)$

Balance equations

 $A_{1} = h_{1} \cdot X_{1} + Y_{1} \cdot (X_{2})^{2}$ $A_{2} = \theta_{2}/X_{2} + Y_{2} (X_{1})^{2}$ $X_{1} = (A_{1} \cdot Y_{1} \cdot t) / (A_{1} + A_{2})$ $X_{2} = (A_{2} + Y_{2}) / t$

Conditional/ constraint equations

$$\theta_1 = Z_1 Z_2 Y_1 / (Z_1 + Z_2)$$

 $\theta_2 = [(Z_1)^2 + (Z_2)^2]/Y_2$

Constitutive equations

$$P_1 - P_1(\underline{Y}, \underline{P}) = 0$$
$$P_2 - P_2(\underline{Y}, \underline{P}) = 0$$

Design constraints

Model analysis

Variable	Туре
Y_1 , Y_2 and Y_3	Dependent (differential or state) variables
Z_1 and Z_2	Design (decision) variables
θ_1 and θ_2	Property parameters (constitutive variables)
A_1, A_2, X_1, X_2	Intermediate variables (unknown)
P_1 and P_2	Performance criteria
C_1 and C_2	Known parameters

Solve Eqs. 30-38 for

Solve Eqs. 39-40 for P

If 39-40 not satisfied,

assume new <u>Z</u> and

specified Z

repeat

Number of eqs = 11 Number of variables = 13 Degrees of freedom = 2 Variables to specify = Z_1 , Z_2

Eqs.	X_{l}	X_2	Y_{l}	Y_2	Y_3	A_{l}	A_2	θ_{I}	θ_2	Z_l	Z_2
31	*			*			*		*		
30		*	*			*		*			
33	*	*	*			*					
34	*	*		*					*		
32		*			*	*		*			
35	*		*			*	*				
36	*			*			*				
37			*					*		*	*
38				*					*	*	*

Number of eqs = 11

Number of variables = 13

Degrees of freedom = 2

Variables to specify = \underline{P}

Lectures 10: Advanced Computer Aided Modelling

Solve Eqs. 39-40 for Y_1 , Y_2 Solve Eqs. 30-36 for X_1 , X_2 , Y_3 , A_1 , A_2 , θ_1 , θ_2

Match θ_1 , θ_2 (target) with Z_1 , Z_2 (product or material or chemical design)

Integrated Process Design and Control Problem Definition

Integrated approach can be achieved by identifying variables together with their target values that have roles in processcontroller design $\min_{\mathbf{x},\mathbf{y},\mathbf{u}} F(\mathbf{x},\mathbf{y},\mathbf{u}) = \begin{bmatrix} F_1(\mathbf{x},\mathbf{y},\mathbf{u}) \\ F_2(\mathbf{x},\mathbf{y},\mathbf{u}) \end{bmatrix}$ subject to: $\dot{\mathbf{x}}(t) = f(\mathbf{x},\mathbf{y},\mathbf{u},t)$ $0 = h(\mathbf{x},\mathbf{y},\mathbf{u})$ $0 \le g(\mathbf{x},\mathbf{y},\mathbf{u})$

 $\mathbf{x}(t_0) = \mathbf{x}_0$

 $\mathbf{u}(t_0) = \mathbf{u}_0$

The solution to this optimization problem must address the tradeoffs between conflicting design and control objectives for the chemical processes

Identifying optimal design together with design-manipulated variables **u**, process-controlled variables **y**, their target set points, and their pairing.

Concept of Driving Force: Application to distillation columns

Driving Force: $D_{ij} = y_i - x_i = x_i \alpha_{ij} / [x_i (\alpha_{ij} - 1) + 1] - x_i$

A design method of distillation separation system based on **identification of the largest driving force.**

At the maximum driving force, separation becomes easier and **energy required is at the minimum**.

Bek-Pedersen, E., Gani, R. (2004). Design and synthesis of distillation systems using a driving-force-based approach, Chem. Eng. Process., 43, 251–262

A Conceptual Example: Design & Control 🗱 **Binary non-Reactive Distillation Column**

Will the same method work for PI?

For example, a reactive distillation column?

 $Isobutene(C_4H_8) + Methanol(CH_4O) \rightarrow MTBE(C_5H_{12}O)$

Number of Compounds – Number of Reactions = 2

With respect to "elements", this is a binary element system

Pérez Cisneros, E.S., Gani, R., Michelsen, M.L. (1997). Reactive separation systems—I. Computation of physical and chemical equilibrium, Chem. Eng. Sci., 52, 527–543.

Case Study: Reactive Distillation Step 1 – Process Design

Reactive distillation column design

Reactive VLE data is obtained by consecutive calculation of reactive bubble points*.

*Tool: ICAS-Process Design Studio

Case Study: Reactive Distillation Step 1 – Process Design

Reactive Distillation Design

Reflux ratio: 2

Theoretical number of trays: 5 plus non-reactive reboiler and condenser Assumptions: Total condenser, Partial reboiler, Chemically saturated liquid reflux

Case Study: Reactive Distillation Step 1 – Process Design

Reactive Distillation Design

Lectures 10: Advanced Computer Aided Modelling

Case Study: Reactive Distillation Step 2 – Optimal Design-Control Solution

Selection of controlled variables

- W_{A,max} primary controlled variable (uncontrolled output)
- W_A^d or W_A^B secondary controlled variable (desired output)
- Set-points value for controlled and manipulated variables
- The calculated value of **y** and **u** at Point (I) are the optimal setpoints.

Case Study: Reactive Distillation Step 2 – Optimal Design-Control Solution

- Sensitivity of controlled variables with respect to disturbances in the feed
- It is verified that disturbance rejection in the feed is the best at the maximum driving force (Point I) than other points.

$$\frac{dy}{dd} = \begin{bmatrix} \frac{dW_{A}^{d}}{dF_{f}} & \frac{dW_{A}^{d}}{dz_{W_{Af}}} \\ \frac{dW_{A}^{B}}{dF_{f}} & \frac{dW_{A}^{B}}{dz_{W_{Af}}} \end{bmatrix} = \begin{bmatrix} \frac{dW_{A}^{d}}{dDF_{i}} \end{bmatrix} \begin{bmatrix} \frac{dDF_{i}}{dW_{A}^{l}} \end{bmatrix} \begin{bmatrix} \frac{dW_{A}^{l}}{dF_{f}} \end{bmatrix} \begin{bmatrix} \frac{dW_{A}^{d}}{dDF_{i}} \end{bmatrix} \begin{bmatrix} \frac{dW_{A}^{l}}{dDF_{i}} \end{bmatrix} \begin{bmatrix} \frac{dW_{A}^{l}}{dE_{f}} \end{bmatrix} \begin{bmatrix} \frac{dW_{A}^{l}}{dE_{H}} \end{bmatrix} \begin{bmatrix} \frac{dW_{A}^{l}}{d$$

Case Study: Reactive Distillation Step 2 – Optimal Design-Control Solution

- Selection of the controller structure (pairing between controlled-manipulated variables)
- It is verified that at the maximum point of the driving force diagram, pair of secondary controlled variable or with manipulated variable is always the best controller structure.

Lectures 10: Advanced Computer Aided Modelling

Case Study: Reactive Distillation Step 3 – Final Selection and Verification

- Rigorous dynamic simulation*
- A rigorous reactive distillation dynamic model based on elements is used.
- The chemical reactions occurring are fast enough to reach the equilibrium.
- Chemical equilibrium condition is implicitly incorporated into the element mass balances.
- Alternative designs are selected in addition to the optimal design for verification purposes.

*Tool: ICAS-Process Simulation

Case Study: Reactive Distillation Step 3 – Final Selection and Verification

- Controller structure verification
- Controller structure at the maximum driving force:

Case Study: Reactive Distillation Step 3 – Final Selection and Verification

Rigorous dynamic simulation: Closed-loop

- Least sensitivity to the disturbances
- Least control loop interaction and effort in manipulation

Case Study: Reactive Distillation Step 3 – Final Selection and Verification

Lectures 10: Advanced Computer Aided Modelling

Model-based process synthesis-design

Biorefinery; CCU; CAMD; Waste-water treatment;

Model of the process-step interval network

PROCESS INTERVALS:

- multiple inlets/outlets
- multiple unit operations
- utilities and chemicals

The generic process interval model

data

Generic Model Equations and Data

MIXING	$F_{i,kk}^{M} = \sum_{k} (F_{i,k,kk}) + \frac{\alpha_{i,kk}}{R_{i,kk}} \cdot R_{i,kk}$ $R_{i,kk} = \frac{\mu_{i,kk}}{P_{i,kk}} \cdot \sum (F_{i,k,kk})$
REACTION	$F_{i,kk}^{R} = F_{i,kk}^{M} + \sum_{rr,react} \left(\frac{\gamma_{i,kk,rr}}{\theta_{react,kk,rr}} \cdot \theta_{react,kk,rr} \cdot F_{reac,kk}^{M} \right)$
WASTES SEPARATION	$F_{i,kk}^{out} = F_{i,kk}^{R} \cdot \left(1 - \frac{SW_{i,kk}}{SW_{i,kk}}\right)$
PRODUCT SEPARATION	$F_{i,kk,kk} = F_{i,k}^{out} \cdot S_{k,kk} \cdot \varepsilon_{i,k,kk}$
TRANSPORTATION	$Ctr_{k,kk} = \sum_{i} F_{i,k,kk} \cdot \frac{W_{k,kk}}{W_{k,kk}} \cdot \frac{dist_{k,kk}}{dist_{k,kk}}$
CAPEX	$CAPEX_{kk} = \frac{P_{kk}}{\sum} \left(F_{i,kk}^{out} \right)^{Q_{kk}}$
OBJECTIVE FUNCTION	$EBIT = \sum_{i,k} \left(P_k^{prod} F_{i,k}^{OUT} - P_k^{raw} F_{i,k}^{OUT} - P_k^{util} R_{i,kk} - P_{i,k}^{waste} Waste_{i,kk} - \frac{CAPEX_k}{t} \right)$

Data:	Source:
Alternatives	Company (all)
Process related	Engineering
Prices and Market related	Marketing, procurement
Product related	Product engineering
Regulations related	Regulatory

Large number of equations and data

Multiple data type and sources

Need for Automation of problem formulation

$\mathbf{F}_{obj} = \min \left\{ \mathbf{C}^{\mathsf{T}} \underline{\mathbf{y}} + \mathbf{f}(\underline{\mathbf{x}}, \underline{\mathbf{y}}, \underline{\mathbf{u}}, \underline{\mathbf{d}}, \underline{\mathbf{\theta}} \right\} + \mathbf{S}_{e} + \mathbf{S}_{i} + \mathbf{S}_{s} + \mathbf{H}_{c} + \mathbf{H}_{p} \right\}$

Process-product model

 $\mathbf{B} \ \underline{\mathbf{x}} + \mathbf{C}^{\mathsf{T}} \underline{\mathbf{y}} \geq \mathbf{D}$

Lectures 10: Advanced Computer Aided Modelling

Or, **Set** $Y_2 = 0$

Integration of process-product design problems

Simultaneous Product – Process Design

Lectures 10: Advanced Computer Aided Modelling

34

SPEED The grand chemical product design model

Chemical product design simulator

There is a need for a product simulator with the same and more useful features than a typical process simulator.

Based on available data, models, methods and analysis tools, the first chemical product simulator

has been developed: **ProCAPD**

Synthesis Problem : The <u>objective</u> of Process Synthesis is to find the best processing route, among numerous alternatives for converting given raw materials to desired products <u>subject to</u> <u>design constraints and predefined performance criteria</u>.

A Computer-Aided Tool to:
Generate all feasible process flow-sheets (To generate novel/innovative solutions).
Quick & efficient evaluation of alternatives.
Design & Analysis of Alternatives
That requires minimal computation resources and expert knowledge.

Examples:

- Model-based system for design/analysis of process analytical technology (PAT) systems
- Model-based system for optimization of refinery (petroleum & bio) operations
- Model-based system for design/analysis of hybrid reactionseparation systems
- Model-based systems for integrated design-control of chemical processes
- Model-based systems for product-process design/analysis (pharmaceuticals, agrochemicals, food, solvents, ...)

••••

Integration of work-flow & data-flow for problem specific solution

Computer-aided modelling tool: ICAS-ModTem

- * Truly innovative solutions to problems related to
 - Energy
 - Water
 - Resources
- Establish modeling as an enabling technology
- Establish solution strategies for multiscale & multidisciplinary nature of problems
 - Handling of large datasets
 - Handling of models from different disciplines
 - Handling of conflicting objectives
- Models not just working with unit operation scale – true predictive models are needed both for process and product

Modelling case study – I

Develop a model for the evaporation of a chemical from a water droplet

Stage-1: Develop models for pure component properties of water and chemical-A (for example, methanol) – includes parameter estimation Stage-2: Develop activity coefficient model (including parameter estimation) Stage-3: Develop evaporation model Stage-4: Combine all models for evapoaration of methanol from water droplet

Note: Corresponding MoT-file will be provided in class

Modelling case study - II

Develop a steady state model for a shortpath evaporation process

Stage-1: Derive the process model equations for a given set of constitutive equations and model assumptions – Model is a DAE in 2 spatial directions
Stage-2: Discretize the DAE model in horizontal direction and integrate in vertical direction
Stage-3: Transfer discretized model to MoT
Stage-4: Solve model in MoT

Note: Corresponding MoT-file will be provided in class

Lecture 10: Additional topics

- Data acquisition & analysis
- Process modelling for control & diagnosis
- Modelling of discrete event systems
- Modelling of hybrid systems

Model-Based Process Control

- *Definitions (controllability, observability)*
- Feedback
- Pole-placement Control
- Linear Quadratic Regulator
- State Filtering
- Model-based Predictive Control

State Controllability

A system is said to be "(state) controllable" if for any t_0 and any initial state $x(t_0) = x_0$ and any final state x_f , there exists a finite time $t_1 > t_0$ and control u(t), such that $x(t_1) = x_f$

> A LTI system with the state equation A = Ax + Buis controllable iff the controllability matrix $U = \begin{bmatrix} B, AB, A^2B, \dots, A^{n-1}B \end{bmatrix}$ has rank n

State Observability

A system is said to be "(state) observable" if for any t_0 and any initial state $x(t_0) = x_0$ there exists a finite time $t_1 > t_0$ such that knowledge of u(t) and y(t) for $t_0 \le t \le t_1$ suffices to determine x_0

> A LTI system with the state space model A = Ax + Bu y = Cxis observable iff the observability matrix $V = \left[C, CA, CA^2, ..., CA^{n-1}\right]^T$ has rank n

MATLAB functions (V4.2) \diamond Controllabilityco = ctrb(A, B)% uncontrolled statesunco = length(A) - rank(co)

In ICAS, the matrix manipulations can be done by supplying the matrices A, B & C

Model equations

Controllability

Observability

$$y_{1} = \begin{bmatrix} 1.9558 & -0.04761 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}$$

$$A = \begin{bmatrix} -7.1847 & -50.0415; & 50.04150 \end{bmatrix};$$

$$B = \begin{bmatrix} 1; & 0 \end{bmatrix};$$

$$co = ctrb(A, B) = \begin{bmatrix} 1.0 & -7.1847 \\ 0 & 50.0415 \end{bmatrix}; & rank(co) = 2$$

 $\begin{bmatrix} \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \\ \mathbf{x} \end{bmatrix} = \begin{bmatrix} -7.1847 & -50.0415 \\ 50.0415 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u$

A = [-7.1847 - 50.0415; 50.0415 0]; C = [1.9558 - 0.04761]; $ob = obsv(A, C) = \begin{bmatrix} 1.9558 & -0.0476\\ -16.4343 & -97.8712 \end{bmatrix}; rank(ob) = 2$

Lectures 10: Advanced Computer Aided Modelling

Example

Structural properties of systems

- A dynamic system possesses a structural property if "almost every" system with the same structure has this property
 - ("same structure" = identical structure graph)

Properties include:

- Structural controllability
- Structural observability
- Structural stability

What is the relation to design?

Model Structure Simplification

Elementary simplification steps

* variable removal:

steady state assumption on a state variable removes the vertex and all adjacent edges and conserves the paths.

* variable lumping:

for a vertex pair with similar dynamics, it lumps the two vertices together, unites adjacent edges and conserves the paths.

Structural Rank

The structural rank (s-rank) of a structure matrix [Q] is its maximal possible rank when its structurally non-zero elements get numerical values

$$[\mathbf{Q}] = \begin{bmatrix} \overline{\mathbf{x}} & 0 & 0 & \mathbf{x} & 0 \\ 0 & \overline{\mathbf{x}} & 0 & 0 & 0 \\ \mathbf{x} & 0 & 0 & \overline{\mathbf{x}} & 0 \\ 0 & 0 & \overline{\mathbf{x}} & 0 & 0 \end{bmatrix}, \ \mathbf{Q}' = \begin{bmatrix} 1 & 0 & 0 & 2 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 1 & 0 & 0 & 2 & 0 \\ 0 & 0 & 5 & 0 & 0 \end{bmatrix}$$
$$s - rank([\mathbf{Q}]) = 4 \quad , \quad rank(\mathbf{Q}) = 3$$

Structural Controllability

A system is structurally controllable if the structural rank (s-rank) of the block structure matrix [A,B] is equal to the number of state variables n

 $[\mathbf{A}, \mathbf{B}] = [[\mathbf{A}] | [\mathbf{B}]], \ \mathbf{U}(\mathbf{A}, \mathbf{B}) = [\mathbf{B} | \mathbf{A}\mathbf{B} | ... | \mathbf{A}^{n-1}\mathbf{B}]$ $s - rank([\mathbf{A}, \mathbf{B}]) \rightarrow rank(\mathbf{U}(\mathbf{A}, \mathbf{B}))$

Structural Controllability

A system is **structurally controllable** if:

- the state structure matrix [A] is of full structural rank.
- the structure graph of the state space realization ([A],[B],[C],[D]) is input connectable.

Structural rank: pairing of columns and rows.Input connectable: path to every state vertex from at least one input vertex.

Structural Observability

A system is **structurally observable** if the structural rank (s-rank) of the block structure matrix $[C,A]^T$ is equal to the number of state variables *n*

Lectures 10: Advanced Computer Aided Modelling

Structural Observability

A system is **structurally observable** if:

- the state structure matrix [A] is of full structural rank.
- the structure graph of the state space realization ([A],[B],[C],[D]) is output connectable.

Structural rank: pairing of columns and rows. **Output connectable:** path from every state vertex to at least one output vertex.

Structural Stability

- Method of circle families
 - conditions depending on the sign of nontouching circle families (computationally hard)
- Method of conservation matrices

sign pattern: $a_{ii} < 0$, $a_{ij} \ge 0$ $i \ne j$ dominant diag: $|a_{ii}| \ge \sum_{i \ne j} a_{ij}$, i = 1,..., n

If the state matrix *A* is a conservation matrix then the system is structurally stable.

Feedback

Open-loop system model $dx/dt = \mathbf{f}(x,u)$, $y = \mathbf{g}(x,u)$

• State feedback

$$u = \mathbf{F}(x)$$

- full state, linear, static feedback $u = \mathbf{K} x$, \mathbf{K} : control gain
- Output feedback $u = \mathbf{F}(y)$

Model-based Predictive Control

Given:

- discrete time parametrized predictive dynamic model

 $y^{(M)}(k+1) = \mathcal{M}(\mathcal{D}[1,k]; \ p^{(M)}) \ , \ k=1,2,\cdots$

- measurement record

 $\mathcal{D}[1,k]=\{ \; (u(au),y(au) \mid au=1,\cdots,k \}$

- loss functional with *N*, $y^{(ref)}$, **Q**, **R** $J^{(N)}(y^{(M)} - y^{(r)}, u) = \sum_{i=1}^{N} [r^{T}(k+i)Qr(k+i) + u^{T}(k+i)Ru(k+i)]$ $r(k) = y^{(r)}(k) - y^{(M)}(k)$, $k = 1, 2, \cdots$

<u>Compute</u>: the discrete time control signal $\{ u(k+i), i=1,...,N \}$ that minimizes the loss

Model-Based Process Diagnosis

- Prediction-based Diagnosis
- Identification-based Diagnosis
- Basic idea: build models which describe
 - normal non-faulty (healthy) behaviour
 - faulty behaviour (identified by fault mode label)

use measured data to determine the fault mode of the system

Simple Example: Batch Water Heater

$$rac{dh}{dt} = rac{v}{A} \eta_I - rac{v}{A} \eta_O$$

$$rac{dT}{dt} = rac{v}{Ah}(T_I - T)\eta_I + rac{H}{c_p
ho h}\kappa$$

where the variables are

time [s]t level in the tank [m]h volumetric flowrate $[m^3/s]$ vspecific heat [Joule/kgK] c_p density $[kg/m^3]$ ρ Ttemperature in the tank [K] T_I inlet temperature [K]Hheat provided by the heater [Joule/sec] A cross section of the tank $[m^2]$ binary input valve [1/0] η_I binary output valve [1/0] η_O binary switch [1/0]ĸ

The range space (value) of signals (state, input, output) is discrete

 $\mathbf{x}(t) \in \mathbf{X} = \{ \mathbf{x}_0, \mathbf{x}_1, \dots, \mathbf{x}_n \}$

- *** Event:** an occurrence of a discrete change
- Time is also discrete
 - T = { $t_0, t_1, ..., t_n, ...$ } = { 0, 1, ... }
 - Only the event **sequence** is important
- * Focus is on sequential and parallel events
- Application areas: scheduling, operating procedures, resource allocation

Approaches to Solving DES Models

* Problem statement

Given

- formal DES model (automata, Petri net)
- initial state
- external events (input sequence)

Generate: internal (state and output) events

 Solution: algorithmic non-polynomial (NP-hard)

Modelling of Hybrid Systems

Characteristics and Issues

<u>All process engineering systems are</u> <u>hybrid in nature</u>

Sources of discrete behaviour

- process flowsheet
- physics and chemistry
- operational policies
- external disturbances

Key application areas of hybrid system modelling

- batch processes for specialty chemicals, pharmaceuticals and paints
- continuous processes during start-up, shut-down and product changeover
- manufacturing systems where discrete items are processed on discrete machines
- design of systems with units described by discrete variables such as staged operations and binary variables (0,1) where they are present (1) or not present (0)

An Example: Startup of an Evaporator

