Lecture 10: Synthesis of Heat Exchanger Networks

Chapter 16 of text-book - the concepts and methods highlighted through examples 16.1 to 16.4.

(With input from Dr. Xiaodong Liang)

- A set of hot process streams that needs to be cooled and a set of cold process streams that needs to be heated
- The flowrates and the inlet and outlet temperatures for all these process streams
- The heat capacities for each of the streams versus their • temperatures as they pass through the heat exchange process
- The available utilities, their temperatures, and their costs per unit of heat provided or removed

Determine

The heat exchange network for energy recovery that will minimize the annualized cost of the equipment plus the annual cost of utilities

Summary of the methods from Chapter 10

- Given a minimum temperature approach (ΔT), the exact amount for minimum utility consumption can be predicted prior to developing the network structure
- Based on the pinch temperatures for minimum utility consumption, the synthesis of the network can be decomposed into sub-networks
- The fewest number of units in each sub-network is often equal to the numbr of process and utility streams minus one
- It is possible to develop good a priori estimates of the minimum total area of heat exchange in a network

Given

Stream	<i>FCp,</i> k₩/°C	T _{in} , °C	°℃	Heat flow out, kW
C1	7.62	60	160	-762.0
C2	6.08	116	260	875.5
H1	8.79	160	93	588.9
H2	10.55	249	138	1171.1

Determine

The heat exchange network for energy recovery that will minimize the annualized cost of the equipment plus the annual cost of utilities

Course: Process Design Principles & Methods, L10, PSE for SPEED, Rafiqul Gani

Course: Process Design Principles & Methods, L10, PSE for SPEED, Rafiqul Gani

FIGURE 10.15 A possible heat exchanger network for 4SP1.

FIGURE 10.15 A possible heat exchanger network for 4SP1. Course: Process Design Principles & Methods, L10, PSE for SPEED, Rafiqul Gani

12

H2 and C2 are exchanged twice. Can we improve on this?

Split H2 and use one branch to heat all of C2 up to pinch while exactly reaching target for this branch

Needs to be evaluated further

Synthesis of heat exchanger networks: Synthesis strategies

Sequential optimization (LP, MILP) Simultaneous optimization (MINLP) – own reading

Rules to be used in Sequential Optimization strategies

Rule 1: Minimum utility cost

Rule 2: Minimum number of units

Rule 3: Minimum investment costs

Minimum Utility Cost

Example 16.1

Determine the minimum utili	y consumption	for the two h	not and two cold	d streams given below:
-----------------------------	---------------	---------------	------------------	------------------------

	Fep (MW/C)	Tin (C)	Tout (C)
H1	1	400	120
H2	2	340	120
C1	1.5	160	400
C2	1.3	100	250

Steam : 500°C Cooling water: 20–30°C Minimum recovery approach temperature (HRAT): 20°C

Solution steps

- **Step 1:** Create the interval table
- **Step 2:** Add the heat contents to the interval table
- **Step 3:** Convert the table from step 2 to a heat cascade diagram
- **Step 4: Derive energy balance equations for each interval on the heat cascade diagram**
- **Step 5:** Formulate and solve the LP optimization problem to find the pinch-point and the corresponding minimum utilities

Course: Process Design Principles & Methods, L10, PSE for SPEED, Rafiqul Gani

17

Course: Process Design Principles & Methods, L10, PSE for SPEED, Rafiqul Gani 18

For each interval, derive energy balance equation, for example, for interval 2

Collect all the equations for all intervals and add objective function (minimize utilities Q_S and Q_W) & solve the LP problem

$$\min Z = Q_s + Q_w$$

s.t. $R_1 - Q_s = -30$
 $R_2 - R_1 = -30$
 $R_3 - R_2 = 123$
 $Q_w - R_3 = 102$
 $Q_{s'} Q_{w'} R_1, R_2, R_3 \ge$

0

$\min Z = Q_s + Q_w$ **Solution steps – Step 5** s.t. $R_1 - Q_s = -30$ $R_2 - R_1 = -30$ $R_3 - R_2 = 123$ $Q_w - R_3 = 102$

 $Q_{v}, Q_{w}, R_1, R_2, R_3 \ge 0$

38

Solution: $R_1 = 30; R_2 = 0; R3 = 123$ $Q_{\rm S} = 60; \ Q_{\rm W} = 225$

	E34 🔹 💿	f_{x}	indicates p	oinch point			Solver Parameters	
	С		D	E	F	G		
22	H1	1		400	120		Set Objective: \$E\$34	1
23	H2	2		340	120			
24	C1	1.5		160	400		To: <u>M</u> ax OMi <u>n</u>	
25	C2	1.3		100	250			
26							By Changing Variable Cells:	
27							\$E\$28:\$E\$32	_
28		Qs		60.000001			Cubiect to the Constraints	
29		Qw		225.000002				
30		R1		30			\$G\$35 = 0 \$G\$36 = 0	
31		R2		0		indicates	\$G\$37 = 0 ¢C¢38 = 0	
32		R3		123.000001			30530 - 0	
33								
34	minimize	Z		=E28+E29				
35	Constraints	1		=E30-E28	-30	=E35-F35		
36		2		=E31-E30	-30	=E36-F36		
37		3		E32-E31	123	=E37-F37		5
38		4		=E29 E32	102	=E38-F38	Make Unconstrained Variables Non-Negative	22

Make Unconstrained Variables Non-Negative

```
⊡ % we have 5 variable
 % x1 x2 x3 x4 x5
-% OS OW R1 R2 R3
 n=5;
 % objective function: x1+x2
 f=zeros(n,1);
 f(1)=1;
 f(2)=1;
 % inequality constraints: 0
 A=[];
 B = [1;
 % equality constraints: 4
 neq=4;
 Aeq=zeros(neq,n);
 Beq=zeros(neq,1);
 Aeq(1,1) = -1; Aeq(1,3) = 1; Beq(1) = -30; \$ -Qs + R1 = -30
 Aeq(2,4)=1; Aeq(2,3)=-1; Beq(2)=-30; % R2 - R1 = -30
 Aeq(3,5)=1; Aeq(3,4)=-1; Beq(3)=123; % R3 - R2 = 123
 Aeq(4, 2)=1; Aeq(4, 5)=-1; Beq(4)=102; % Qw - R3 = 102
 % boundary: non-negative
 lb=zeros(n,1);
```

x=linprog(f,A,B,Aeq,Beq,lb)

Collect all the equations for all intervals and add objective function (minimize utilities Q_S and Q_W) & solve the LP problem

 $\min Z = Q_s + Q_w$ $\min Z = Q_c + Q_w$ $\frac{\text{Rearrange}}{\text{to obtain}} \xrightarrow{s.t. R_1 = Q_s - 30}$ s.t. $R_1 - Q_s = -30$ $R_2 = R_1 - 30 = Q_s - 60$ $R_2 - R_1 = -30$ to obtain $R_3 - R_2 = 123$ $R_3 = R_2 + 123 = Q_s + 63$ $Q_{yy} - R_3 = 102$ $Q_w = R_3 + 102 = Q_s + 165$ $Q_{e}, Q_{w}, R_1, R_2, R_3 \geq 0$ $R_1, R_2, R_3, Q_s, Q_w \ge 0$ **Solution:** $R_1 = 30; R_2 = 0; R3 = 123$ $Q_s = 60; Q_w = 225$

Minimum Utility

We have matched the results that can be obtained by the methods of chapter 10. However, we have not minimized the utility costs! The objective function needs a cost term.

Introduce the utility cost terms to form the LP transhipment model

Add more details to each interval of the heat cascade diagram and derive new energy balance models

Introduce the utility cost terms to form the LP transhipment model

Course: Process Design Principles & Mathodo LAO, ESE for SPEED, Rafiqul Gani

Minimum utility cost with new problem formulation

Example 16.2: Given the data in Table 16.2 for two hotstreams and two cold-streams, two hot utilities and one cold utility, Determine the minimum utility cost with the LP transhipment problem

	FCp (MW	$T_{\rm in}({\rm K})$) $T_{out}(K)$
Hl	2.5	400	320
H2	3.8	370	320
Cl	2	300	420
C2	2	300	370
HP Ste	am: 500K	\$80/kWyr	
LP Stee	<i>am:</i> 380K	\$50/kWyr	
Coolin,	g Water: 300K	\$20/kWyr	
Minim	um Recovery Ap	proach Temperatu	re (HRAT): 10K

TABLE 16.2 Data for Example 16.2

Perform steps 2-4 (exercise in class)

 TABLE 16.3
 Temperature Intervals of Example 16.2

Perform steps 2-4 (exercise in class)

Course: Process Design Principles & Methods, L10, PSE for SPEED, Rafiqul Gani

$$\min Z = 80000 \ Q_{HP} + 50000 \ Q_{LP} + 20000 \ Q_{CW}$$

s.t.

 $R_{1} - Q_{HP} = -60$ $R_{2} - R_{1} = 10$ $R_{3} - R_{2} - Q_{LP} = -15$ $-R_{3} + Q_{CW} = 75$ $R_{1}, R_{2}, R_{3}, Q_{HP}, Q_{LP}, Q_{CW} \ge 0$

The solution to this LP yields the following results:

Utility cost: Z = 6,550,000 \$/yr. Heat load high pressure steam: $Q_{HP} = 60 MW$ Heat load low pressure steam: $Q_{LP} = 5 MW$ Heat load cooling water: $Q_{CW} = 75 MW$ Residuals: $R_1 = 0, R_2 = 10 MW, R_3 = 0$.

~

The two above zero residuals imply that there are two pinch points for this problem: at 400–390 K, and at 370–360 K. This means that the temperature intervals in this problem can be partitioned into three subnetworks:

Subnetwork 1:	above 400–390 K
Subnetwork 2:	between 400-390 K and 370-360 K
Subnetwork 3:	below 370-360 K

$$\min Z = 80000 \ Q_{HP} + 50000 \ Q_{LP} + 20000 \ Q_{CW}$$

s.t.

 $R_{1} - Q_{HP} = -60$ $R_{2} - R_{1} = 10$ $R_{3} - R_{2} - Q_{LP} = -15$ $- R_{3} + Q_{CW} = 75$ $R_{1}, R_{2}, R_{3}, Q_{HP}, Q_{LP}, Q_{CW} \ge 0$

The solution to this LP yields the following results:

Utility cost: Z = 6,550,000 \$/yr. Heat load high pressure steam: $Q_{HP} = 60 MW$ Heat load low pressure steam: $Q_{LP} = 5 MW$ Heat load cooling water: $Q_{CW} = 75 MW$ Residuals: $R_1 = 0, R_2 = 10 MW, R_3 = 0$.

K

The two above zero residuals imply that there are two pinch points for this problem: at 400–390 K, and at 370–360 K. This means that the temperature intervals in this problem can be partitioned into three subnetworks:

Assumes	any given pair of
Subnetwork 1: above 400–390 K	ald strange app
Subnetwork 2: between 400–390 K and 370–360 K $100 \times C$	cold suballis call
exchange	the set the set the set of the se
SUDRELWOFK 5: DEIOW 570-500 K	ot be true

Minimum Utility Cost with Constrained Matches

The LP transhipment model implicitly assumes that any given pair of hot and cold streams can exchange heat (because no information as to which pair can or cannot exchange heat was included)

1. Transportation model where we consider directly all the feasible links for heat exchange between each pair of hot and cold streams over their corresponding temperature intervals (Cerda and Westerberg, 1983). Figure 16.3 illustrates this representation for Example 16.1.

FIGURE 16.3 Representation of heat flows for transportation model.

Minimum Utility Cost with Constrained Matches

The LP transhipment model implicitly assumes that any given pair of hot and cold streams can exchange heat (because no information as to which pair can or cannot exchange heat was included)

- 1. Transportation model where we consider directly all the feasible links for heat exchange between each pair of hot and cold streams over their corresponding temperature intervals (Cerda and Westerberg, 1983). Figure 16.3 illustrates this representation for Example 16.1.
- 2. Expanded transshipment model (Papoulias and Grossmann, 1983) where we consider within each temperature interval a link for the heat exchange between a given pair of hot and cold streams, where the cold stream is present at that interval and the hot stream is either also present, or else it is present in a higher temperature interval. Figure 16.4 illustrates this representation for Example 16.1.

FIGURE 16.4 Representation of expanded transshipment model for Example 16.1.

Minimum Utility Cost with Constrained Matches: Extension of the LP transhipment model

The basic idea in the expanded transshipment model is as follows. First, instead of assigning a single overall heat residual R_k exiting at each temperature level k, we will assign individual heat residuals R_{ik} , R_{mk} for each hot stream i and each hot utility m that are present at or above that temperature interval k. Secondly, within that interval k we will define the variable Q_{ijk} to denote the heat exchange between hot stream i and a cold stream j. Likewise, we can define similar variables for the exchange between process streams and utilities

The new more detailed model

37

Advantages

$$\min \ Z = \sum_{m \in S} c_m Q_m^S + \sum_{n \in W} c_n Q_n^W$$
s.t. $R_{ik} - R_{i,k-1} + \sum_{j \in C_k} Q_{ijk} + \sum_{n \in W_k} Q_{ink} = Q_{ik}^H \quad i \in H'_k$
 $R_{mk} - R_{m,k-1} + \sum_{j \in C_k} Q_{mjk} - Q_m^S = 0 \quad m \in S'_k$
 $\sum_{i \in H_k} Q_{ijk} + \sum_{m \in S_k} Q_{mjk} = Q_{jk}^C \quad j \in C_k$
 $\sum_{i \in H_k} Q_{ink} - Q_n^W = 0 \qquad n \in W_k \quad k = 1, \dots K$
 $R_{ik}, \ R_{mk}, \ Q_{ijk}, \ Q_{mjk}, \ Q_{ink}, \ Q_m^S, \ Q_n^W \ge 0$
 $R_{i0} = R_{iK} = 0$

The size of this LP is obviously larger than the previous one. We can very easily specify constratins on the matches!

If we want to forbid a match between hot stream *i* and cold stream *j*, all we need to do is to set $Q_{ijk}=0$ for all intervals k.

Minimum Utility Cost & Constrained Matching

EXAMPLE 16.3

Let us consider the example in Table 16.1 that we examined in section 16.2. For that example we found that by not imposing any restriction on the matches, the minimum heating is 60 MW, and the minimum cooling is 225 MW. If the cost of the heating and cooling utilities is \$80/kWyr and \$20/kWyr, respectively, this would mean an annual cost of \$9,300,000/yr. In addition, we found a pinch point at 340–320°C. Let us assume now that we were to impose as a constraint that the match for stream H1 and C1 is forbidden.

Temperature	Heat Contents (MW)							
Intervals (K)	CI	HI	H2	CI	C2			
420 400								
<u>H1</u> 400 380				30				
<u>H2</u> 340 <u>320</u>		60		90				
int 3 180 160	250	160	320	240	117			
int 4 —		60	120		78			
—	C2	280	440	360	195			

Course: Process Design Principles & Methods, L10, PSE for SPEED, Rafiqul Gani

 100°

•Convert to the new detailed heat cascade diagram (Fig 16.4) –

Compare this diagram with Fig 16.1

•Derive the energy balance equations for each interval with the extended transhipment model

Exercise in class

FIGURE 16.4 Representation of expanded transshipment model for Example 16.1.

•Convert to the new TABLE 16.4 Expanded LP for Restricted Match in Example 16.3 Utility Cost: detailed heat cascade diagram (Fig 16.4) –

Interval 1:

Interval 2:

Interval 3:

Compare this diagram with Fig 16.1

balance equations Interval 4:

for each interval with the extended transhipment model

•Derive the energy

Forbidden match:

 $\min Z = 80000 Q_s + 20000 Q_w$ s.t. $R_{s1} + Q_{s11} - Q_s = 0$ $Q_{S11} = 30$ $R_{12} + Q_{112} = 60$ $R_{s2} - R_{s1} + Q_{s12} = 0$ $Q_{912} + Q_{112} = 90$ $R_{13} - R_{12} + Q_{113} + Q_{123} = 160$ $R_{23} + Q_{213} + Q_{223} = 320$ $R_{S3} - R_{S2} + Q_{S13} + Q_{S23} = 0$ $Q_{113} + Q_{213} + Q_{513} = 240$ $Q_{123} + Q_{223} + Q_{523} = 117$ $-R_{13} + Q_{124} + Q_{1144} = 60$ $-R_{23} + Q_{224} + Q_{2W4} = 120$ $-R_{S3} + Q_{S24} = 0$ $Q_{124} + Q_{224} + Q_{524} = 78$

 $Q_{112} = Q_{113} = 0$ (H1-C1 do not exchange heat)

 $Q_{1W4} + Q_{2W4} - Q_W = 0$

Exercise in class

Solving it in EXCEL

cost steam	80000					TARLE 16.4	Expanded I D for Destricted Match in Example 16.2
cost water	20000					TABLE 10.4	Expanded EF for Restricted Match in Example 16.5
cost utilities		=C42*E28+C43*E29	\$/y		=C42*D50+C43*	Utility Cost: Interval 1:	min Z = 80000 Q_S + 20000 Q_W s.t. $R_{S1} + Q_{S11} - Q_S = 0$
Transshipment model							$Q_{S11} = 30$
	0.	120	Constraints	0	550 550	Interval 2:	$R_{12} + Q_{112} = 60$
	QS Owr	120	=D52+D58-D50	0	=E50-F50		R = R + C = 0
	QW Rc1	285.000001	=D58	50	-527-521		$\kappa_{S2} - \kappa_{S1} + Q_{S12} = 0$
	Rs1 Rs2	0	-053-052+050	0	-E52-F52		$Q_{512} + Q_{112} = 90$
	Rs2	0	=D59	90	=E54-F54	1	
	R12	60	=D55 =D56-D55+D62	160	=F55-F55	Interval 3:	$R_{13} - R_{12} + Q_{113} + Q_{123} = 160$
	R13	103.000001	=D57+D63+D64	320	=E56-F56		$R_{22} + Q_{212} + Q_{222} = 320$
	R23	80	=D54-D53+D60+D61	0	=E57-F57		25 2215 2225
	Qs11	30	=D63+D60	240	=E58-F58		$\kappa_{s3} - \kappa_{s2} + Q_{s13} + Q_{s23} = 0$
	Qs12	90	=D62+D64+D61	117	=E59-F59		$Q_{113} + Q_{213} + Q_{513} = 240$
	Qs13	0	=D66+D67-D56	60	=E60-F60		
	Qs23	0	=D68+D69-D57	120	=E61-F61		$Q_{123} + Q_{223} + Q_{523} = 117$
	Q123	116.999999	=D65-D54	0	=E62-F62	Interval 4:	$-R_{10} + Q_{101} + Q_{101} = 60$
	Q213	240	=D66+D68+D65	78	=E63-F63		~13 · 2124 · 21W4 ···· 00
	Q223	0	=D67+D69-D51	0	=E64-F64		$-R_{23} + Q_{224} + Q_{2W4} = 120$
	Qs24	0	=D70	=0	=E65-F65		$-R_m + O_{m_i} = 0$
	Q124	78	=D71	=0	=E66-F66		
	Q1w4	85.0000010000001					$Q_{124} + Q_{224} + Q_{524} = 78$
	Q224	0					$Q_{1} = Q_{2} = Q_{2} = 0$
	Q2w4	200					$z_1wq \cdot z_2wq zw = v$
	Q112	0				Forbidden mat	ich: $Q_{112} = Q_{113} = 0$ (H1-C1 do not exchange heat)
	Q113	0			-		

\$15,300,000/yr vs. \$9,300,000/yr

Solving it in MATLAB

∃% we have 22 variable % x1 x2 x3 x4 x5 хб х7 x8 x9 x10 x11 x12 x13 R12 R13 R23 Q123 % Qs Qw Rs1 Rs2 Rs3 Qs11 Qs12 Qs13 Qs23 x15 x16 x17 x18 x19 x22 8 x14 x20 x21 % Q213 Q223 Qs24 Q124 Q1w4 Q224 0112 Q113 Q2w4 n=22; % objective function f=zeros(n,1); f(1)=80000; f(2) = 20000;% inequality constraints A=[]; B=[]; % equality constraints neq=17;Aeq=zeros(neq,n); Beq=zeros(neq,1); Aeq(1,3)=1;Aeq(1, 9) = 1;Aeq(1,1) = -1;Aeq(2,9)=1; Beq(2) = 30;Aeq(3, 6) = 1;Aeq(3,21)=1;Beq(3) = 60;Aeg(4,3) = -1; Aeg(4,10) = 1;Aeq(4, 4) = 1;Aeg(5,10)=1; Aeq(5,21)=1; Beq(5) = 90;Aeq(6,7)=1;Aeq(6,6)=-1; Aeq(6,22)=1; Aeq(6,13)=1; Beq(6)=160; Aeg(7,8)=1; Aeq(7,14)=1; Aeq(7,15)=1; Beq(7) = 320;Aeq(8,5)=1; Aeq(8,4)=-1; Aeq(8,11)=1; Aeq(8,12)=1; Aeq(9,22)=1; Aeq(9,14)=1; Aeq(9,11)=1; Beq(9) = 240;Aeq(10,13)=1; Aeq(10,15)=1; Aeq(10,12)=1; Beq(10)=117; Aeq(11,7)=-1; Aeq(11,17)=1; Aeq(11,18)=1; Beq(11) = 60;Aeq(12,8)=-1; Aeq(12,19)=1; Aeq(12,20)=1; Beg(12) = 120;Aeq(13,5)=-1; Aeq(13,16)=1; Aeq(14,17)=1; Aeq(14,19)=1; Aeq(14,16)=1; Beg(14) = 78;Aeq(15,18)=1; Aeq(15,20)=1; Aeq(15,2)=-1; Aeg(16,21)=1; % which two cannot match Aeg(17,22)=1; % boundary lb=zeros(n,1); x=linprog(f,A,B,Aeq,Beq,lb)

TABLE 16.4 Expanded LP for Restricted Match in Example 16.3

	ANL
Utility Cost:	$\min Z = 80000 Q_S + 20000 Q_W$
Interval 1: s.t.	$R_{S1} + Q_{S11} - Q_S = 0$
	$Q_{S11} = 30$
Interval 2:	$R_{12} + Q_{112} = 60$
	$R_{S2} - R_{S1} + Q_{S12} = 0$
	$Q_{\rm S12} + Q_{112} = 90$
Interval 3:	$R_{13} - R_{12} + Q_{113} + Q_{123} = 160$
	$R_{23} + Q_{213} + Q_{223} = 320$
	$R_{S3} - R_{S2} + Q_{S13} + Q_{S23} = 0$
	$Q_{113} + Q_{213} + Q_{513} = 240$
	$Q_{123} + Q_{223} + Q_{523} = 117$
Interval 4:	$-R_{13} \div Q_{124} + Q_{1W4} = 60$
	$-R_{23} + Q_{224} + Q_{2W4} \approx 120$
	$-R_{S3} + Q_{S24} = 0$
	$Q_{124} + Q_{224} + Q_{524} = 78$
	$Q_{1W4} + Q_{2W4} - Q_W = 0$
Forbidden match:	$Q_{112} = Q_{113} = 0$ (H1-C1 do not exchange heat)

Same Q_s and Q_w , but not necessarily same for others

	panded Er for Restricted Watch in Example 16.5	— Solution of the
Utility Cost: Interval 1:	min Z = 80000 Q_S + 20000 Q_W s.t. $R_{S1} + Q_{S11} - Q_S = 0$	problem gives us
	$Q_{S11} = 30$	the minimum cost
Interval 2:	$R_{12} + Q_{112} = 60$	utility plus a
	$R_{S2} - R_{S1} + Q_{S12} = 0$	realistic match of
	$Q_{S12} + Q_{112} = 90$	hot and cold
Interval 3:	$R_{13} - R_{12} + Q_{113} + Q_{123} = 160$ $R_{13} + Q_{12} + Q_{123} = 220$	streams!
	$R_{23} + Q_{213} + Q_{223} = 520$ $R_{53} - R_{52} + Q_{513} + Q_{523} = 0$ $Q_{113} + Q_{213} + Q_{513} = 240$	Are we satisfied?
	$Q_{123} + Q_{223} + Q_{523} = 117$	What more can we
Interval 4:	$-R_{13} + Q_{124} + Q_{1W4} = 60$	include?
	$-R_{23} + Q_{224} + Q_{2W4} = 120$	
	$-R_{S3} + Q_{S24} = 0$	What is the
	$Q_{124} + Q_{224} + Q_{524} = 78$	minimum number
F . 1.11	$\mathcal{Q}_{1W4} + \mathcal{Q}_{2W4} - \mathcal{Q}_W = 0$	
Forbidden match:	$Q_{112} = Q_{113} = 0$ (H1-C1 do not exchange heat)	OI HEA:

 TABLE 16.4
 Expanded LP for Restricted Match in Example 16.3

Prediction of matches for minimum number of units

EXAMPLE 16.4

Let us consider again the problem in Table 16.1. We will assume that no constraints are imposed on the matches, so that 60 MW will be required for the heating and 225 MW for the cooling. Referring to Figure 16.8, which follows from Figure 16.4, Eqs. (16.12) to (16.14) lead to the problem shown in Table 16.5. If we solve the MILP, the solution that we obtain involves the six following matches:

Above pir	ich:
-----------	------

Match Steam–C1 Match H1–C1	60 MW 60 MW	$(y_{S1A} = 1, Q_{S11} = 30, Q_{S12} = 30)$ $(y_{11A} = 1, Q_{112} = 60)$
Below pinch:		
Match H1C1	25 MW	$(y_{11B} = 1, Q_{113} = 25)$
Match H1C2	195 MW	$(y_{12B} = 1, Q_{123} = 117, Q_{124} = 78)$
Match H2-C1	215 MW	$(y_{21B} = 1, Q_{123} = 215)$
Match H2-W	225 MW	$(y_{2WB} = 1, Q_{2W4} = 225)$

Temperature	Heat Contents (MW)				
Intervals (K)	CI	HI	H2	CI	C2
420 400	A				
<u>H1</u> 400 380				30	
H2 340 320		60		90	
int 3 180 160	250	160	320	240	117
int 4 120 100		60	120		78
-	C2	280	440	360	195

45

FIGURE 16.8 Representation of heat flows in MILP transhipment.

TABLE 16.5 MILP Model for Example 16.4

Derive the energy	Number of units:	\langle	$\min Z = y_{S1}^{A} + y_{11}^{A} + y_{11}^{B} + y_{12}^{B} + y_{12}^{B} + y_{14}^{B}$ + $y_{21}^{B} + y_{22}^{B} + y_{24}^{B}$
balance equations	Interval 1:	s.t.	$R_{S1} + Q_{S11} = 60$ $Q_{S11} = 30$
for each interval	Interval 2:		$R_{12} + Q_{112} = 60$
with the extended			$R_{S2} - R_{S1} + Q_{S12} = 0$
transhipment model	Interval 3:		$Q_{S12} + Q_{112} = 90$ $R_{13} - R_{12} + Q_{113} + Q_{123} = 160$ $R_{23} + Q_{213} + Q_{223} = 320$ $Q_{13} + Q_{13} + Q_{223} = 320$
For match or not			$Q_{113} + Q_{213} + Q_{513} = 2.10$ $Q_{123} + Q_{223} + Q_{523} = 117$
$\sum_{k=1}^{K^q} Q_{ijk} - U_{ij} y_{ij}^q \le 0$	Interval 4:		$\begin{aligned} &-R_{13} + Q_{124} + Q_{1W4} = 60 \\ &-R_{23} + Q_{224} + Q_{2W4} = 120 \\ &Q_{124} + Q_{224} + Q_{524} = 78 \\ &Q_{1W4} + Q_{2W4} = 225 \end{aligned}$
The upper bound	Matches above pinch:		$Q_{S11} + Q_{S12} - 60 y_{S1}^A \le 0$ $Q_{112} - 60 y_{11}^A \le 0$
U_{ij} is given by the smallest of the heat	Matches below pinch:		$Q_{113} - 220 y_{11}^{B} \le 0$ $Q_{123} + Q_{124} - 195 y_{12}^{B} \le 0$ $Q_{1W4} - 220 y_{1W}^{B} \le 0$
contents of the two streams			$Q_{213} - 240 y_{21}^{B} \le 0$ $Q_{223} + Q_{224} - 60 y_{22}^{B} \le 0$ $Q_{2W4} - 225 y_{2W}^{B} \le 0$ 47

3% we have 27 variable TABLE 16.5 MILP Model for Example 16.4 % x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 % ys1A y11A y11B y12B y1wB y21B y22B y2wB Rs1 Qs11 R12 Q112 Rs2 Qs1 % x15 x16 x17 x18 x19 x21 x22 x26 $\min Z = y_{S1}^{A} + y_{11}^{A} + y_{11}^{B} + y_{12}^{B} + y_{12}^{B} + y_{11}^{B}$ x20 x23 x24 x25 Number of units: % R13 Q113 Q123 R23 Q213 Qs13 Q223 Qs23 Q124 Q224 Qs24 Q1w4 n=27; $+ y_{21}^{B} + y_{22}^{B} + y_{2W}^{B}$ % objective function f=zeros(n,1); $R_{S1} + Q_{S11} = 60$ Interval 1: s.t. % 8 binary nb=8; $Q_{S11} = 30$ f(1:nb)=1; % inequality constraints $R_{12} + Q_{112} = 60$ Interval 2: nie=8; $R_{S2} - R_{S1} + Q_{S12} = 0$ A=zeros(nie,n); B=zeros(nie,1); $Q_{S12} + Q_{112} = 90$ A(1,10)=1; A(1,14)=1; A(1,1) = -60;A(2, 12) = 1;A(2,2) = -60; $R_{13} - R_{12} + Q_{113} + Q_{123} = 160$ A(3,16)=1; A(3,3) = -220;Interval 3: A(4,17)=1; A(4,23)=1; A(4, 4) = -195; $R_{23} + Q_{213} + Q_{223} = 320$ A(5,26)=1; A(5,5) = -220;A(6,19)=1; A(6, 6) = -240; $Q_{113} + Q_{213} + Q_{513} = 240$ A(7,21)=1; A(7,24)=1; A(7,7) = -195;A(8,27)=1; A(8,8) = -225; $Q_{123} + Q_{223} + Q_{523} = 117$ % equality constraints neg=13; $-R_{13} + Q_{124} + Q_{1W4} = 60$ Interval 4: Aeq=zeros(neq,n); Beq=zeros(neq,1); $-R_{23} + Q_{224} + Q_{2W4} = 120$ Aeq(1,9)=1; Aeq(1,10)=1; Beq(1) = 60; $Q_{124} + Q_{224} + Q_{524} = 78$ Aeq(2,10)=1; Beg(2)=30; Aeq(3,11)=1; Aeq(3,12)=1; Beq(3) = 60; $Q_{1W4} + Q_{2W4} = 225$ Aeq(4,13)=1; Aeq(4,9)=-1; Aeq(4,14)=1; Beq(4) = 0;Aeq(5,14)=1; Aeq(5,12)=1; Beq(5)=90; $Q_{S11} + Q_{S12} - 60 y_{S1}^{A} \le 0$ Aeq(6,15)=1; Aeq(6,11)=-1; Aeq(6,16)=1; Aeq(6,17)=1; Beq(6)=160; Matches above pinch: Aeq(7,18)=1; Aeq(7,19)=1; Aeq(7,21)=1; Beq(7) = 320; $Q_{112} - 60 y_{11}^A \le 0$ Aeq(8,16)=1; Aeq(8,19)=1; Aeq(8,20)=1; Beq(8) = 240;Aeq(9,17)=1; Aeq(9,21)=1; Aeq(9,22)=1; Beg(9)=117; $Q_{113}-220\;y_{11}{}^B\leq 0$ Aeg(10,15)=-1; Aeg(10,23)=1; Aeg(10,26)=1; Beq(10) = 60;Matches below pinch: Aeg(11,18)=-1; Aeg(11,24)=1; Aeg(11,27)=1; Beg(11)=120; $Q_{123} + Q_{124} - 195 y_{12}{}^B \le 0$ Aeg(12,23)=-1; Aeg(12,24)=1; Aeg(12,25)=1; Beq(12) = 78;Aeg(13,26)=1; Aeg(13,27)=1; Beg(13)=225; $Q_{1W4} - 220 \; y_{1W}{}^B \leq 0$ % boundary $Q_{213}-240 \; y_{21}{}^B \leq 0$ lb=zeros(n,1); ub=ones(n,1)*Inf; $Q_{223}+Q_{224}-60\;y_{22}{}^B\leq 0$ ub(1:nb)=1; % binary is integer $Q_{2W4} - 225 y_{2W}^{B} \le 0$ intcon=[1:1:nb]; x=intlinprog(f,intcon,A,B,Aeq,Beq,lb,ub)

60 MW	$(y_{S1A} = 1, Q_{S11} = 30, Q_{S12} = 30)$
60 MW	$(y_{11A} = 1, Q_{112} = 60)$
25 MW	$(y_{11B} = 1, Q_{113} = 25)$
195 MW	$(y_{12B} = 1, Q_{123} = 117, Q_{124} = 78)$
215 MW	$(y_{21B} = 1, Q_{123} = 215)$
225 MW	$(y_{2WB} = 1, Q_{2W4} = 225)$
	60 MW 60 MW 25 MW 195 MW 215 MW 225 MW

FIGURE 16.9 Network configuration for matches predicted from MILP in Example 16.4.

What Next?

Add heat exchanger design equations ($Q = UA\Delta T_{lm}$) Add heat exchanger cost equations (cost = f(A))

Result: MINLP Transhipment model (simultaneous optimization strategy) – rest of chapter 16.

Note: MINLP = Mixed Integer Non-Linear Programming

Research Highlights – I: Biorefinery data

Course: Process Design Principles & Methods, L10, PSE for SPEED, Rafiqul Gani

51

Research Highlights – II: Superstructure

Research Highlights – III: Optimal Biorefinery

Fobj = f(products, raw material, chemicals, waste, fixed cost) = 35.3 USD/100kg of biomass

Manage the complexity by decomposition: example

	$\min 2x_1 + 3x_2 + 1.5y_1 + 2y_2 - 0.5y_3$	(1)
Objective function	st	
Process	$x_1^2 + y_1 = 1.25$	(2)
model	$x_2^{1s} + 1.5y_2 = 3.0$	(3)
Process constraints	$x_1 + y_1 \le 1.60$	(4)
	$1.333x_2 + y_2 \le 3.00$	(5)
Flowsheet constraints	$-y_1 - y_2 + y_3 \le 0$	(6)
	$y_{1}y_{2} = 1$	(7)
Variable bounds	$x_1, x_2 \ge 0$	(8)
	$y_1, y_2, y_3 = \{0,1\}$	(9)

Solution strategy: Solve I: Y1 = 1, Y2 = 1, Y3=0; Y1=1, Y2=1, Y3=1(only two feasible sets) *Solve II:* X1 = 0.5; X2 = 0.544 (for both sets of Y) Solve III: Eq. 4 & Eq. 5 are satisfied for both sets of Y and the calculated values of X *Solve IV:* Eq 1 = 6.132 for set 1; = 5.632 for set 2 Global optimal solution: set 2 (X1=0.5, X2=0.544,Y1=1, Y2=1, Y3=1)