A multi-layered view of chemical & biochemical engineering

Rafiqul Gani
PSE for SPEED, Skyttemosen 6, DK3450 Allerod, Denmark
(Head office: Bangkok, Thailand)

rgani2018@gmail.com
http://www.pseforspeed.com/
Core chemical & biochemical engineering

- Implements synthesis routes to convert raw materials to useful products
- Designs the process
- Determines the best operating conditions
- …

Needs knowledge of unit operations, transport phenomena, reaction engineering, separation technologies, …
What is (bio) chemical engineering?
A more modern view

Chemical & biochemical engineering is the application of science, mathematics and economics to the process of converting raw materials or chemicals into more sustainable forms. The terms economics & sustainability are very important here.
What (bio) chemical engineers do? **Highlights**

- **Work with unit operations** for purposes of chemical synthesis and/or separation (chemical reaction, mass-, heat- and momentum-transfer operations)
- **Apply physical laws** of conservation of mass, energy and momentum
- **Apply principles** of thermodynamics, reaction kinetics and transport phenomena
- **Solve problems** – design & operate processes
- **More than just process engineering** – applies chemical knowledge to create better materials and products that are useful to our society
Classification of the key products in Bio & ChE

<table>
<thead>
<tr>
<th>Key</th>
<th>Basis</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost-Manufacturing</td>
<td>Unit Ops</td>
<td>Feedstock</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Commodities</th>
<th>Molecules</th>
<th>Microstructures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed-Selection</td>
<td>Chemistry</td>
<td>Function-Need</td>
</tr>
<tr>
<td>Discovery</td>
<td>Microstructure</td>
<td>Science</td>
</tr>
</tbody>
</table>

Traditional: Convert resources to commodities?
Manufacturing of commodity products – what is new?

Adopted from Cussler (2011)
Classification of the key products in Bio & ChE

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Single Species</th>
<th>Multi Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key</td>
<td>Speed-Selection</td>
<td>Function-Need</td>
</tr>
<tr>
<td>Cost- Manufacturing</td>
<td>Chemistry</td>
<td>Microstructure</td>
</tr>
<tr>
<td>Basis</td>
<td>Unit Ops</td>
<td></td>
</tr>
<tr>
<td>Risk</td>
<td>Feedstock</td>
<td>Science</td>
</tr>
</tbody>
</table>

Bio & ChE are extending to design of single species products
For single species products, “selection” is the key

46 Kilos = $800 M

Adopted from Cussler (2011)
Classification of the key products in Bio & ChE

<table>
<thead>
<tr>
<th>Key</th>
<th>Commodity</th>
<th>Single Species</th>
<th>Multi Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>Manufacturing</td>
<td>Speed-Selection</td>
<td>Function-Need</td>
</tr>
<tr>
<td>Basis</td>
<td>Unit Ops</td>
<td>Chemistry</td>
<td>Microstructure</td>
</tr>
<tr>
<td>Risk</td>
<td>Feedstock</td>
<td>Discovery</td>
<td>Science</td>
</tr>
</tbody>
</table>

Bio & ChE are also extending to design of multi species products
For multi species products, “need” is the key

Jet-fuel blend

Gasoline blend

Scientifically specified needs

Liquid formulations & emulsions

Consumer reaction based needs
Where did this get us to?
We are the master of the planet earth

Positive contribution to the development of our society
Is our future sustainable? The challenge facing us

Convert resources to products

Use energy, water, ...

Environmental Impacts (GWP, OD, HTTP, ...)

Produce waste

Only 25% converted; must be > 40% (Driolli 2007)
Current & future challenges

Sustainability Issues: Current and future survival

World population is expected to reach 11 billions by 2050

<table>
<thead>
<tr>
<th>Increase in water, energy & commodities demand</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6-7 x [€$] Global GDP growth over next ~50 years (in constant dollars)</td>
<td></td>
</tr>
<tr>
<td>5-6 x [~] Production capacity for most commodities (steel, chemicals, lumber, etc.)</td>
<td></td>
</tr>
<tr>
<td>3.5 x [迦] Energy demand</td>
<td>7 x [迦] Electricity demand</td>
</tr>
<tr>
<td>Increase [💧] Water demand</td>
<td></td>
</tr>
<tr>
<td>Increase [コー] GHG emissions</td>
<td></td>
</tr>
</tbody>
</table>

Adopted from Sirola, PSE-2012
Is the core layer sufficient to describe Bio & ChE?

Core of chemical & biochemical engineering - does it include:
* Learn about value preservation versus value creation
* How much of science to add?
* How to innovate?
* How to address the grand challenges?
* …….
Role & scope of Bio & ChE

1. What is the role of Chemical & Biochemical Engineering in “commodity” industry vs. “new emerging” technologies?

2. What is the future scope for fundamental contributions in Chemical & Bio-Chemical Engineering?
 Engineering vs. Science

3. Need to innovate and ensure sustainability
 New ideas, methods & tools
Need for innovation in process-product design

How to find new and significantly better unit operations?

Methanol + Acetic Acid = Methyl Acetate + Water

Eastman Chemicals
Can our current methods, tools & technologies deliver?

Well-known PSE tools: ASPEN, gPROMS, HYSIS, PROII, ChemCad, ...(design, optimization, control, plan-schedule operations, ...)

Can our current methods and tools solve the problems of our interest? Or, do we need a new class of software tools that promote innovation?
Need to extrapolate (think outside the box?)

Solution approaches
Ability to find predictive, innovative & more sustainable solutions

REALITY

- **System under study**
 - Provide realistic model parameters

VIRTUAL REALITY

- **Model system**
 - Simulations

Experiments

- **Optimized design?**
 - Verify theoretical solutions
 - Guidance and insights for experiments

The core, however, needs to be supplemented by appropriate levels of science and engineering to find sustainable and innovative solutions. Sustainable and innovative solutions can be found through an appropriate mix of science-engineering...
Is our position as the master of planet earth threatened?

Challenge:
Technological solutions must be provided within an industrial, social, regulatory and ethical framework.

Not threatened but our survival maybe is threatened unless we do something!
New issues: Why & when to make (products)?

Questions: what, how are addressed but what about: why & when?

Zhang, Babi & Gani, Annual Rev of Chem & Biomedical Eng, 2016
We need to develop new directions

Unique opportunities and formidable challenges

Probe the frontiers of technological innovations to bring

• New categories of abundant resources
• Substitute and/or improve resources that become scarce
• Deliver sustainable solutions (energy, water, food ...)
• Contribute to staving off disasters (global climate change, a viral pandemic, oil spills, ...)
• 3rd Paradigm (Integration of process-product-phenomena)
Risky feedstocks that need to be secured

Fight for survival!

Adopted from Cussler (2011)
Resources scarcity: need to reuse the metal

Question: What will happen if a large percentage of the population in China decide to have a car?

Azapagic, WCCE 2013, Seoul, Korea
We need to be problem solver not problem creator!

If I change one molecule of this useless & polluting product, we can make an excellent hair-spray!
Necessary shift in education - 1

1. Need to keep core Chemical Engineering Knowledge; Need to emphasize fundamentals: basis is life-long learning

2. Need to modernize curriculum and add flexibility
 • Increase exposure at molecular level
 • Increase exposure to energy (alternative/renewable) and sustainability issues
 • Expose students to new process technology
 • Introduce product design as complement of process design
 • Emphasize process operations, enterprise planning
 • Increase link to other industrial sectors (pharma, electronics)

Adopted from Grossmann 2014
3. Need to recognize that “bio-area” & “nano-area” will be important but not dominant force in Chemical Engineering

4. Environmental Engineering increasingly important and requires chemical engineering (water use efficiency, pollution control, chemical substitution, …) : Civil Eng. ownership?

5. Need closer interaction with industry; otherwise risk being irrelevant

6. Need to provide excitement to recruit the very best young people to join Chemical Engineering

Adopted from Grossmann 2014
Are the core & interface layers sufficient?

* How to understand ecology? Is it important?
* How to serve the society?
* How to make the right decisions; become the decision makers or influence them?
* How to encourage development?
*

Sustainability (water, energy, resources)

Operation/Design
- (production)

Raw Materials
- (resources)

Products
- (needs)

Synthesis Routes
- (reaction; separation; mixing; heating-cooling; etc.)

Innovation
- (process, product)

Process

Science

Engineering
We are now in a golden age for Bio & ChE?

Adopted from Phil Westmoreland’s* 5 reasons

• Manufacturing’s shift to emphasize processes and properties (smart manufacturing)
• New abundance of hydrocarbon resources in USA, China & other locations (a game changer)
• Biology’s turning into a molecular science (multi-disciplinary)
• Computing, evolved into a cyberinfrastructure (knowledge and data management – big data)
• ChEs’ breadth and problem-solving approaches (contribute to the society)

* President of the AIChE, 2013
Turn challenges into opportunities: some key areas (human needs)

How can we achieve sustainability or sustainable development?

A Azapagic, WCCE 2013, Seoul, Korea
The need for cleaner and renewable technologies

Uncontrolled manufacturing negatively impacting the atmosphere negatively & causing great harm!

Totally integrated system with recycle of resources leading to a circular economy – green engineering!

We have a responsibility to control our emissions and reduce our waste
Sustainable development & impact on global warming?

Where is the real boundary of our system?

More efficient energy demanding technologies combined with more efficient energy producing technologies: Manufacturing processes (example)

Reduce the energy demand and therefore CO2 emission
Human Welfare and Ecological Footprints compared

<table>
<thead>
<tr>
<th>Country</th>
<th>Footprint</th>
<th>Biocapacity</th>
<th>Deficit/reserve</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>3.38</td>
<td>0.94</td>
<td>-2.44 gha/persons</td>
</tr>
<tr>
<td>USA</td>
<td>8.22</td>
<td>3.76</td>
<td>-4.46</td>
</tr>
<tr>
<td>Canada</td>
<td>8.17</td>
<td>16.01</td>
<td>+7.83</td>
</tr>
<tr>
<td>Sweden</td>
<td>7.35</td>
<td>10.62</td>
<td>+3.38</td>
</tr>
<tr>
<td>Denmark</td>
<td>5.51</td>
<td>4.78</td>
<td>-0.73</td>
</tr>
<tr>
<td>Brazil</td>
<td>3.11</td>
<td>9.08</td>
<td>+5.97</td>
</tr>
<tr>
<td>Japan</td>
<td>5.02</td>
<td>0.72</td>
<td>-4.30</td>
</tr>
<tr>
<td>Cuba</td>
<td>1.95</td>
<td>0.76</td>
<td>-1.19</td>
</tr>
<tr>
<td>India</td>
<td>1.16</td>
<td>0.45</td>
<td>-0.71</td>
</tr>
<tr>
<td>Bangladesh</td>
<td>0.72</td>
<td>0.38</td>
<td>-0.35</td>
</tr>
<tr>
<td>Average</td>
<td>1.73</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Global Footprint Network National Footprint Accounts (2016)
A multi-layered view of Bio & ChE: Core, Interface & Connecting layers

The overall objectives are to serve the society through educating the necessary engineers who can apply their education-training for industrial development taking advantage of the opportunities available and addressing the challenges being faced.
Barcelona Declaration – 10th World Congress of Chemical Engineering, 1–5 October 2017

Carlos Negroa, Félix Garcia-Ochoab, Philippe Tanguyc, Guilherme Ferreirad, Jules Thibaulte, Shuichi Yamamotof, Rafiqul Gani*

a Univ Complutense Madrid, Dept Chem Eng, Avda Complutense S-N, Madrid 28040, Spain
b Univ Complutense Madrid, Dept Chem Eng, Avda Complutense S-N, E-28040 Madrid, Spain
c Polytechnique Montreal, Station CV, Montreal, H3C3A7, Canada
d Tecnico Lisboa, Universidade de Lisboa, Av. Rovisco Pais, Lisboa, Portugal
e Univ Ottawa, Dept Chem & Biol Eng, Ottawa, ON K1N 6N5, Canada
f Yamaguchi University, Tokiwadai, Ube, 755-8611, Japan
* Technical University of Denmark, CAPEC, Department of Chemical and Biochemical Engineering, Soltofts Plads, Building 229, DK-2800 Lyngby, Denmark
Conclusions & future directions

Barcelona Declaration, 2017 (ChERD, 2018)

We should agree to:

• Promote research and development as a fundamental pillar and encourage technology development to achieve a planet able to sustain a growing population, while improving quality of life.
• Facilitate global dissemination of chemical and biochemical engineering technical knowledge and industrial best practices, striving to bring together academia and industry worldwide.
• Promote conservation and care of global resources, health, safety, and the environment.
• Promote the highest standards of professional ethics and conduct for chemical engineers worldwide, to safeguard the public.